Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anders Ynnerman is active.

Publication


Featured researches published by Anders Ynnerman.


IEEE Transactions on Visualization and Computer Graphics | 2006

Local Histograms for Design of Transfer Functions in Direct Volume Rendering

Claes Lundström; Patric Ljung; Anders Ynnerman

Direct volume rendering (DVR) is of increasing diagnostic value in the analysis of data sets captured using the latest medical imaging modalities. The deployment of DVR in everyday clinical work, however, has so far been limited. One contributing factor is that current transfer function (TF) models can encode only a small fraction of the users domain knowledge. In this paper, we use histograms of local neighborhoods to capture tissue characteristics. This allows domain knowledge on spatial relations in the data set to be integrated into the TF. As a first example, we introduce partial range histograms in an automatic tissue detection scheme and present its effectiveness in a clinical evaluation. We then use local histogram analysis to perform a classification where the tissue-type certainty is treated as a second TF dimension. The result is an enhanced rendering where tissues with overlapping intensity ranges can be discerned without requiring the user to explicitly define a complex, multidimensional TF


IEEE Transactions on Visualization and Computer Graphics | 2006

Full Body Virtual Autopsies using a State-of-the-art Volume Rendering Pipeline

Patric Ljung; Calle Winskog; Anders Persson; Claes Lundström; Anders Ynnerman

This paper presents a procedure for virtual autopsies based on interactive 3D visualizations of large scale, high resolution data from CT-scans of human cadavers. The procedure is described using examples from forensic medicine and the added value and future potential of virtual autopsies is shown from a medical and forensic perspective. Based on the technical demands of the procedure state-of-the-art volume rendering techniques are applied and refined to enable real-time, full body virtual autopsies involving gigabyte sized data on standard GPUs. The techniques applied include transfer function based data reduction using level-of-detail selection and multi-resolution rendering techniques. The paper also describes a data management component for large, out-of-core data sets and an extension to the GPU-based raycaster for efficient dual TF rendering. Detailed benchmarks of the pipeline are presented using data sets from forensic cases


IEEE Transactions on Visualization and Computer Graphics | 2010

Local Ambient Occlusion in Direct Volume Rendering

Frida Hernell; Patric Ljung; Anders Ynnerman

This paper presents a novel technique to efficiently compute illumination for Direct Volume Rendering using a local approximation of ambient occlusion to integrate the intensity of incident light for each voxel. An advantage with this local approach is that fully shadowed regions are avoided, a desirable feature in many applications of volume rendering such as medical visualization. Additional transfer function interactions are also presented, for instance, to highlight specific structures with luminous tissue effects and create an improved context for semitransparent tissues with a separate absorption control for the illumination settings. Multiresolution volume management and GPU-based computation are used to accelerate the calculations and support large data sets. The scheme yields interactive frame rates with an adaptive sampling approach for incrementally refined illumination under arbitrary transfer function changes. The illumination effects can give a better understanding of the shape and density of tissues and so has the potential to increase the diagnostic value of medical volume rendering. Since the proposed method is gradient-free, it is especially beneficial at the borders of clip planes, where gradients are undefined, and for noisy data sets.


ACM Transactions on Graphics | 2012

BRDF models for accurate and efficient rendering of glossy surfaces

Joakim Löw; Joel Kronander; Anders Ynnerman; Jonas Unger

This article presents two new parametric models of the Bidirectional Reflectance Distribution Function (BRDF), one inspired by the Rayleigh-Rice theory for light scattering from optically smooth surfaces, and one inspired by micro-facet theory. The models represent scattering from a wide range of glossy surface types with high accuracy. In particular, they enable representation of types of surface scattering which previous parametric models have had trouble modeling accurately. In a study of the scattering behavior of measured reflectance data, we investigate what key properties are needed for a model to accurately represent scattering from glossy surfaces. We investigate different parametrizations and how well they match the behavior of measured BRDFs. We also examine the scattering curves which are represented in parametric models by different distribution functions. Based on the insights gained from the study, the new models are designed to provide accurate fittings to the measured data. Importance sampling schemes are developed for the new models, enabling direct use in existing production pipelines. In the resulting renderings we show that the visual quality achieved by the models matches that of the measured data.


ieee vgtc conference on visualization | 2006

Multiresolution interblock interpolation in direct volume rendering

Patric Ljung; Claes Lundström; Anders Ynnerman

We present a direct interblock interpolation technique that enables direct volume rendering of blocked, multiresolution volumes. The proposed method smoothly interpolates between blocks of arbitrary block-wise level-of-detail (LOD) without sample replication or padding. This permits extreme changes in resolution across block boundaries and removes the interblock dependency for the LOD creation process. In addition the full data reduction from the LOD selection can be maintained throughout the rendering pipeline. Our rendering pipeline employs a flat block subdivision followed by a transfer function based adaptive LOD scheme. We demonstrate the effectiveness of our method by rendering volumes of the order of gigabytes using consumer graphics cards on desktop PC systems.


ieee vgtc conference on visualization | 2005

Extending and simplifying transfer function design in medical volume rendering using local histograms

Claes Lundström; Patric Ljung; Anders Ynnerman

Direct Volume Rendering (DVR) is known to be of diagnostic value in the analysis of medical data sets. However, its deployment in everyday clinical use has so far been limited. Two major challenges are that the current methods for Transfer Function (TF) construction are too complex and that the tissue separation abilities of the TF need to be extended. In this paper we propose the use of histogram analysis in local neighborhoods to address both these conflicting problems. To reduce TF construction difficulty, we introduce Partial Range Histograms in an automatic tissue detection scheme, which in connection with Adaptive Trapezoids enable efficient TF design. To separate tissues with overlapping intensity ranges, we propose a fuzzy classification based on local histograms as a second TF dimension. This increases the power of the TF, while retaining intuitive presentation and interaction.


IEEE Transactions on Visualization and Computer Graphics | 2012

Efficient Visibility Encoding for Dynamic Illumination in Direct Volume Rendering

Joel Kronander; Daniel Jönsson; Joakim Löw; Patric Ljung; Anders Ynnerman; Jonas Unger

We present an algorithm that enables real-time dynamic shading in direct volume rendering using general lighting, including directional lights, point lights, and environment maps. Real-time performance is achieved by encoding local and global volumetric visibility using spherical harmonic (SH) basis functions stored in an efficient multiresolution grid over the extent of the volume. Our method enables high-frequency shadows in the spatial domain, but is limited to a low-frequency approximation of visibility and illumination in the angular domain. In a first pass, level of detail (LOD) selection in the grid is based on the current transfer function setting. This enables rapid online computation and SH projection of the local spherical distribution of visibility information. Using a piecewise integration of the SH coefficients over the local regions, the global visibility within the volume is then computed. By representing the light sources using their SH projections, the integral over lighting, visibility, and isotropic phase functions can be efficiently computed during rendering. The utility of our method is demonstrated in several examples showing the generality and interactive performance of the approach.


IEEE Transactions on Visualization and Computer Graphics | 2011

Multi-Touch Table System for Medical Visualization: Application to Orthopedic Surgery Planning

Claes Lundström; Thomas Rydell; Camilla Forsell; Anders Persson; Anders Ynnerman

Medical imaging plays a central role in a vast range of healthcare practices. The usefulness of 3D visualizations has been demonstrated for many types of treatment planning. Nevertheless, full access to 3D renderings outside of the radiology department is still scarce even for many image-centric specialties. Our work stems from the hypothesis that this under-utilization is partly due to existing visualization systems not taking the prerequisites of this application domain fully into account. We have developed a medical visualization table intended to better fit the clinical reality. The overall design goals were two-fold: similarity to a real physical situation and a very low learning threshold. This paper describes the development of the visualization table with focus on key design decisions. The developed features include two novel interaction components for touch tables. A user study including five orthopedic surgeons demonstrates that the system is appropriate and useful for this application domain.


Computer Graphics Forum | 2014

A Survey of Volumetric Illumination Techniques for Interactive Volume Rendering

Daniel Jönsson; Erik Sundén; Anders Ynnerman; Timo Ropinski

Interactive volume rendering in its standard formulation has become an increasingly important tool in many application domains. In recent years several advanced volumetric illumination techniques to be used in interactive scenarios have been proposed. These techniques claim to have perceptual benefits as well as being capable of producing more realistic volume rendered images. Naturally, they cover a wide spectrum of illumination effects, including varying shading and scattering effects. In this survey, we review and classify the existing techniques for advanced volumetric illumination. The classification will be conducted based on their technical realization, their performance behaviour as well as their perceptual capabilities. Based on the limitations revealed in this review, we will define future challenges in the area of interactive advanced volumetric illumination.


eurographics | 2007

Efficient ambient and emissive tissue illumination using local occlusion in multiresolution volume rendering

Frida Hernell; Patric Ljung; Anders Ynnerman

This paper introduces a novel technique to compute illumination for Direct Volume Rendering. By adding shadow effects to volume rendered images, the perception of shapes and tissue properties can be significantly improved and it has the potential to increase the diagnostic value of medical volume rendering. The integrated intensity of incident light for a voxel is computed using a local approximation of the ambient occlusion, thus avoiding the rendering of tissues with very low illumination. Luminous tissue effects are also introduced to enhance the illumination model, controlled through an emissive component in the transfer function. This effect allows the user to highlight specific structures and can give a better understanding of tissue density. Multiresolution volume management and GPU-based computation is used to significantly speed-up the calculations and to support large data sets. The scheme yields interactive frame rates for incrementally refined ambient and emissive illumination for arbitrary transfer function changes.

Collaboration


Dive into the Anders Ynnerman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge