Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anderson G. M. da Silva is active.

Publication


Featured researches published by Anderson G. M. da Silva.


Angewandte Chemie | 2016

Plasmonic Nanorattles as Next-Generation Catalysts for Surface Plasmon Resonance-Mediated Oxidations Promoted by Activated Oxygen

Anderson G. M. da Silva; Thenner S. Rodrigues; Valquírio G. Correia; Tiago Vinicius Alves; Rafael S. Alves; Rômulo A. Ando; Fernando R. Ornellas; Jiale Wang; Leandro H. Andrade; Pedro H. C. Camargo

Nanorattles, comprised of a nanosphere inside a nanoshell, were employed as the next generation of plasmonic catalysts for oxidations promoted by activated O2 . After investigating how the presence of a nanosphere inside a nanoshell affected the electric-field enhancements in the nanorattle relative to a nanoshell and a nanosphere, the SPR-mediated oxidation of p-aminothiophenol (PATP) functionalized at their surface was investigated to benchmark how these different electric-field intensities affected the performances of Au@AgAu nanorattles, AgAu nanoshells and Au nanoparticles having similar sizes. The high performance of the nanorattles enabled the visible-light driven synthesis of azobenzene from aniline under ambient conditions. As the nanorattles allow the formation of electromagnetic hot spots without relying on the uncontrolled aggregation of nanostructures, it enables their application as catalysts in liquid phase under mild conditions using visible light as the main energy input.


Chemistry: A European Journal | 2014

Rapid Synthesis of Hollow Ag–Au Nanodendrites in 15 Seconds by Combining Galvanic Replacement and Precursor Reduction Reactions

Anderson G. M. da Silva; Michele L. de Souza; Thenner S. Rodrigues; Rafael S. Alves; Marcia L. A. Temperini; Pedro H. C. Camargo

Metallic nanomaterials displaying hollow interiors as well as sharp tips/branches at their surface (such as hollow nanodendrites) are attractive, because these features enable higher surface-to-volume ratios than their solid and/or rounded counterparts. This paper describes a simple strategy for the synthesis of Ag-Au nanodendrites in 15 s using Ag nanospheres prepared in a previous synthetic step as seeds. Our approach was based on the utilization of Ag nanospheres as seeds for Au deposition by a combination of galvanic replacement reaction between Ag and AuCl4(-)(aq) and AuCl4(-)(aq) reduction using hydroquinone in the presence of polyvinylpyrrolidone (PVP) as a stabilizer and water as the solvent. The produced Ag-Au nanodendrites presented monodisperse sizes, and their surface morphologies could be tuned as a function of growth time. Owing to their hollow interiors and sharp tips, the Ag-Au nanodendrites performed as effective substrates for surface-enhanced Raman scattering (SERS) detection of 4-MPy (4-mercaptopyridine) and R6G (rhodamine 6G) as probe molecules. We believe that the approach described herein can serve as a protocol for the fast and one-step synthesis of Ag-Au hollow nanondendrites with a wide range of sizes, compositions, and surface morphologies for applications in SERS and catalysis.


Química Nova | 2014

An undergraduate level experiment on the synthesis of Au nanoparticles and their size-dependent optical and catalytic properties

Anderson G. M. da Silva; Thenner S. Rodrigues; Alexandra Macedo; Rafael Pires da Silva; Pedro H. C. Camargo

The synthesis of gold nanoparticles (Au NPs) 15, 26, and 34 nm in diameter, followed by the investigation of their size-dependent optical and catalytic properties, is described herein as an undergraduate level experiment. The proposed experiment covers concepts on the synthesis, stabilization, and characterization of Au NPs, their size-dependent optical and catalytic properties at the nanoscale, chemical kinetics, and the role of a catalyst. The experiment should be performed by groups of two or three students in three lab sessions of 3 h each and organized as follows: i) synthesis of Au NPs of different sizes and investigation of their optical properties; ii) evaluation of their catalytic activity; and iii) data analysis and discussion. We believe that this activity enables students to integrate these multidisciplinary concepts in a single experiment as well as to become introduced/familiarized with an active research field and current literature in the areas of nanoparticle synthesis and catalysis.


RSC Advances | 2016

Rational design of plasmonic catalysts: matching the surface plasmon resonance with lamp emission spectra for improved performance in AgAu nanorings

Thenner S. Rodrigues; Anderson G. M. da Silva; Arthur de Moura; Isabella G. Freitas; Pedro H. C. Camargo

In order to enable practical applications of SPR-excitation in heterogeneous catalysis, facile procedures for the synthesis of plasmonic catalysts as well as the use of commercially available and inexpensive lamps as the excitation source are highly desirable. In this context, the development of catalysts displaying SPR extinction that matches, as much as possible, the emission spectra of commercially available lamps represent an intuitive strategy to maximize performance. We report the design and facile synthesis of AgAu nanorings displaying SPR extinction that closely matches the emission spectra of a commercial halogen–tungsten lamp. The AgAu nanorings were employed as catalysts for the SPR-mediated oxidation of methylene blue in the liquid phase (water as the solvent), under ambient conditions, and using a halogen–tungsten lamp as the only energy input. The activity of the nanorings was benchmarked against Ag and Au nanospheres. We found that the activity of the nanorings was higher relative to the nanospheres, and that both hot electrons and holes generated as a result of the SPR excitation participated in the methylene blue oxidation reaction with similar relative contributions. Our results show that the rational design of metallic nanostructures plays an important role for enabling practical applications in the field of plasmonic catalysis, in which facile procedures can be employed for the synthesis of the catalysts (attractive for large-scale production) and commercial lamps may be used as the only energy input.


Chemistry: A European Journal | 2015

Surface Segregated AgAu Tadpole-Shaped Nanoparticles Synthesized Via a Single Step Combined Galvanic and Citrate Reduction Reaction.

Anderson G. M. da Silva; Edward A. Lewis; Thenner S. Rodrigues; Thomas J. A. Slater; Rafael S. Alves; Sarah J. Haigh; Pedro H. C. Camargo

New AgAu tadpole nanocrystals were synthesized in a one-step reaction involving simultaneous galvanic replacement between Ag nanospheres and AuCl4(-)(aq.) and AuCl4(-)(aq.) reduction to Au in the presence of citrate. The AgAu tadpoles display nodular polycrystalline hollow heads, while their undulating tails are single crystals. The unusual morphology suggests an oriented attachment growth mechanism. Remarkably, a 1 nm thick Ag layer was found to segregate so as to cover the entire surface of the tadpoles. By varying the nature of the seeds (Au NPs), double-headed Au tadpoles could also be obtained. The effect of a number of reaction parameters on product morphology were explored, leading to new insights into the growth mechanisms and surface segregation behavior involved in the synthesis of bimetallic and anisotropic nanomaterials.


Catalysis Science & Technology | 2016

Hollow AgPt/SiO2 nanomaterials with controlled surface morphologies: is the number of Pt surface atoms imperative to optimize catalytic performances?

Thenner S. Rodrigues; Alisson Henrique Marques da Silva; Anderson G. M. da Silva; Daniel G. Ceara; Janaina F. Gomes; José Mansur Assaf; Pedro H. C. Camargo

We describe herein an investigation on how the number of Pt surface atoms and nature of exposed surface facets affect the catalytic performances of AgPt nanomaterials displaying controlled surface morphologies (smooth or rough surfaces), shapes (spherical or one-dimensional), and hollow interiors towards CO oxidation. More specifically, we focused on AgPt nanoshells (smooth surfaces), assembled nanoparticles (rough surfaces), nanotubes with smooth surfaces, and nanotubes with rough surfaces. We found that their catalytic performances followed the order: nanotubes with smooth surfaces > nanoshells, nanotubes with rough surfaces > assembled nanoparticles. The better catalytic activity observed for the nanoshells relative to the assembled nanoparticles can be associated with their higher number of Pt surface atoms. Even though the nanotubes with rough surfaces had a higher number of Pt surface atoms relative to the nanotubes with smooth surfaces, the latter displayed higher catalytic activities as a result of the preferential exposure of {100} facets, which are the most active towards CO oxidation relative to {111} and {110}. Interestingly, the nanotubes with smooth surfaces also displayed higher catalytic activities when compared to the nanoshells, showing that the preferential exposure of {100} side facets compensated the decrease in their number of Pt surface atoms relative to the nanoshells. Our data showed that the catalytic performances were strongly dependent on the surface morphologies, in which the preferential exposure of more active surface facets may play a significant role in the optimization of performances relative to the number of Pt surface atoms.


Archive | 2015

Controlled Synthesis: Nucleation and Growth in Solution

Pedro H. C. Camargo; Thenner S. Rodrigues; Anderson G. M. da Silva; Jiale Wang

The controlled synthesis of metallic nanomaterials in solution is central to realize many applications that arise from their fascinating properties. As properties in metal nanomaterials are strongly dependent upon size, shape, composition, structure (solid versus hollow interiors), and surface functionality, controlled synthesis is a powerful approach to tailor and optimize properties as well as to establish how they are dependent on the several physical and chemical parameters that define a nanostructure. In this context, this chapter focuses on the fundamentals of the controlled synthesis of metal nanomaterials in solution phase in terms of the available theoretical framework. Specifically, it starts by introducing the mechanisms employed for the stabilization of nanomaterials during solution-phase synthesis (Sect. 2.2). The basics of nucleation and growth in solution will be discussed in Sect. 2.3. After that, the shape-controlled synthesis of Ag nanomaterials will be employed as proof-of-concept example of how thermodynamic versus kinetic considerations, oxidative etching, and surface capping can be employed to effectively maneuver the shape of a metal nanocrystal in solution (Sect. 2.4). Finally, some of the current challenges and outlook regarding the controlled synthesis of metal-based nanomaterials will be presented (Sect. 2.5).


Langmuir | 2016

Catalytic Properties of AgPt Nanoshells as a Function of Size: Larger Outer Diameters Lead to Improved Performances

Thenner S. Rodrigues; Anderson G. M. da Silva; Mariana C. Gonçalves; Humberto V. Fajardo; Rosana Balzer; Luiz Fernando Dias Probst; Alisson Henrique Marques da Silva; José Mansur Assaf; Pedro H. C. Camargo

We report herein a systematic investigation on the effect of the size of silver (Ag) nanoparticles employed as starting materials over the morphological features and catalytic performances of AgPt nanoshells produced by a combination of galvanic replacement between Ag and PtCl6(2-) and PtCl6(2-) reduction by hydroquinone. More specifically, we focused on Ag nanoparticles of four different sizes as starting materials, and found that the outer diameter, shell thickness, and the number of Pt surface atoms of the produced nanoshells increased with the size of the starting Ag nanoparticles. The produced AgPt nanoshells were supported into SiO2, and the catalytic performances of the AgPt/SiO2 nanocatalysts toward the gas-phase oxidation of benzene, toluene, and o-xylene (BTX oxidation) followed the order: AgPt 163 nm/SiO2 > AgPt 133 nm/SiO2 > AgPt 105 nm/SiO2 > AgPt 95 nm/SiO2. Interestingly, bigger AgPt nanoshell sizes lead to better catalytic performances in contrast to the intuitive prediction that particles having larger outer diameters tend to present poorer catalytic activities due to their lower surface to volume ratios as compared to smaller particles. This is in agreement with the H2 chemisorption results, and can be assigned to the increase in the Pt surface area with size due to the presence of smaller NPs islands at the surface of the nanoshells having larger outer diameters. This result indicates that, in addition to the overall diameters, the optimization of the surface morphology may play an important role over the optimization of catalytic activities in metal-based nanocatalysts, which can be even more pronounced that the size effect. Our data demonstrate that the control over surface morphology play a very important role relative to the effect of size to the optimization of catalytic performances in catalysts based on noble-metal nanostructures.


Catalysis Science & Technology | 2018

Sub-15 nm CeO2 nanowires as an efficient non-noble metal catalyst in the room-temperature oxidation of aniline

Anderson G. M. da Silva; Daniel C. Batalha; Thenner S. Rodrigues; Eduardo G. Candido; Sulusmon C. Luz; Isabel Cristina Martins de Freitas; Fabio C. Fonseca; Daniela C. de Oliveira; Jason G. Taylor; Susana I. Córdoba de Torresi; Pedro H. C. Camargo; Humberto V. Fajardo

We described herein the facile synthesis of sub-15 nm CeO2 nanowires based on a hydrothermal method without the use of any capping/stabilizing agent, in which an oriented attachment mechanism took place during the CeO2 nanowire formation. The synthesis of sub-15 nm CeO2 nanowires could be achieved on relatively large scales (∼2.6 grams of nanowires per batch), in high yields (>94%), and at low cost. To date, there are only a limited number of successful attempts towards the synthesis of CeO2 nanowires with such small diameters, and the reported protocols are typically limited to low amounts. The nanowires displayed uniform shapes and sizes, high surface areas, an increased number of oxygen defects sites, and a high proportion of Ce3+/Ce4+ surface species. These features make them promising candidates for oxidation reactions. To this end, we employed the selective oxidation of aniline as a model transformation. The sub-15 nm CeO2 nanowires catalyzed the selective synthesis of nitrosobenzene (up to 98% selectivity) from aniline at room temperature using H2O2 as the oxidant. The effect of solvent and temperature during the catalytic reaction was investigated. We found that such parameters played an important role in the control of the selectivity. The improved catalytic activities observed for the sub-15 nm nanowires could be explained by: i) the uniform morphology with a typical dimension of 11 ± 2 nm in width, which provides higher specific surface areas relative to those of conventional catalysts; ii) the significant concentration of oxygen vacancies and high proportion of Ce3+/Ce4+ species at the surface that represent highly active sites towards oxidation reactions; iii) the crystal growth along the (110) highly catalytically active crystallographic directions, and iv) the mesoporous surface which is easily accessible by liquid substrates. The results reported herein demonstrated high activities under ambient conditions, provided novel insights into selectivities, and may inspire novel metal oxide-based catalysts with desired performances.


Anais Da Academia Brasileira De Ciencias | 2018

Controlled synthesis of noble metal nanomaterials: motivation, principles, and opportunities in nanocatalysis

Rafael S. Geonmonond; Anderson G. M. da Silva; Pedro H. C. Camargo

This review describes some principles of the controlled synthesis of metal nanoparticles, focusing on how the fundamental understanding of their synthesis in the solution-phase can be put to tailor size, shape, composition, and architecture. The maneuvering over these parameters not only enable the tuning of properties, but also the maximization and optimization of performances for various applications. Herein, we start with a brief description of metallic nanoparticles, highlighting the motivation for achieving physicochemical control in their synthesis. After that, we turn our attention to some important definitions and classifications as well as their unique properties such as surface and quantum effects. Moreover, we discuss the strategies for the controlled synthesis of metal nanomaterials based on the top-down and bottom-up approaches, focusing our discussion on their formation mechanisms in liquid-phase in terms of both thermodynamic and kinetic control. Finally, we point out the promising applications of controlled nanomaterials in the field of nanocatalysis and plasmon-enhanced catalysis, describing some of the current challenges in these fields.

Collaboration


Dive into the Anderson G. M. da Silva's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Humberto V. Fajardo

Universidade Federal de Ouro Preto

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José Mansur Assaf

Federal University of São Carlos

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge