Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anderson Miyoshi is active.

Publication


Featured researches published by Anderson Miyoshi.


Microbial Cell Factories | 2005

Protein secretion in Lactococcus lactis: an efficient way to increase the overall heterologous protein production

Yves Le Loir; Vasco Azevedo; Sergio C. Oliveira; Daniela A. Freitas; Anderson Miyoshi; Luis G. Bermúdez-Humarán; Sébastien Nouaille; Luciana A. Ribeiro; Sophie Y. Leclercq; Jane E. Gabriel; Valeria Guimarães; Maricê N. Oliveira; Cathy Charlier; Michel Gautier; Philippe Langella

Lactococcus lactis, the model lactic acid bacterium (LAB), is a food grade and well-characterized Gram positive bacterium. It is a good candidate for heterologous protein delivery in foodstuff or in the digestive tract. L. lactis can also be used as a protein producer in fermentor. Many heterologous proteins have already been produced in L. lactis but only few reports allow comparing production yields for a given protein either produced intracellularly or secreted in the medium. Here, we review several works evaluating the influence of the localization on the production yields of several heterologous proteins produced in L. lactis. The questions of size limits, conformation, and proteolysis are addressed and discussed with regard to protein yields. These data show that i) secretion is preferable to cytoplasmic production; ii) secretion enhancement (by signal peptide and propeptide optimization) results in increased production yield; iii) protein conformation rather than protein size can impair secretion and thus alter production yields; and iv) fusion of a stable protein can stabilize labile proteins. The role of intracellular proteolysis on heterologous cytoplasmic proteins and precursors is discussed. The new challenges now are the development of food grade systems and the identification and optimization of host factors affecting heterologous protein production not only in L. lactis, but also in other LAB species.


Applied and Environmental Microbiology | 2002

Production of Human Papillomavirus Type 16 E7 Protein in Lactococcus lactis

Luis G. Bermúdez-Humarán; Philippe Langella; Anderson Miyoshi; Alexandra Gruss; R. Tamez Guerra; R. Montes de Oca-Luna; Y. Le Loir

ABSTRACT The E7 protein of human papillomavirus type 16 was produced in Lactococcus lactis. Secretion allowed higher production yields than cytoplasmic production. In stationary phase, amounts of cytoplasmic E7 were reduced, while amounts of secreted E7 increased, suggesting a phase-dependent intracellular proteolysis. Fusion of E7 to the staphylococcal nuclease, a stable protein, resulted in a highly stable cytoplasmic protein. This work provides new candidates for development of viral screening systems and for oral vaccine against cervical cancer.


Protein Expression and Purification | 2011

Lactococcus lactis as a live vector: Heterologous protein production and DNA delivery systems

Daniela Santos Pontes; Marcela de Azevedo; Jean-Marc Chatel; Philippe Langella; Vasco Azevedo; Anderson Miyoshi

Lactic acid bacteria (LAB), widely used in the food industry, are present in the intestine of most animals, including humans. The potential use of these bacteria as mucosal delivery vehicles for vaccinal, medical or technological use has been extensively investigated. Lactococcus lactis, a LAB species, is a potential candidate for the production of biologically useful proteins and for plasmid DNA delivery to eukaryotic cells. Several delivery systems have been developed to target heterologous proteins to a specific cell location (i.e., cytoplasm, cell wall or extracellular medium) and more recently to efficiently transfer DNA to eukaryotic cells. A promising application of L. lactis is its use for the development of live mucosal vaccines. Here, we have reviewed the expression of heterologous protein and the various delivery systems developed for L. lactis, as well as its use as an oral vaccine carrier.


Journal of Bacteriology | 2012

Pangenomic Study of Corynebacterium diphtheriae That Provides Insights into the Genomic Diversity of Pathogenic Isolates from Cases of Classical Diphtheria, Endocarditis, and Pneumonia

Eva Trost; Jochen Blom; Siomar de Castro Soares; I-Hsiu Huang; Arwa Al-Dilaimi; Jasmin Schröder; Sebastian Jaenicke; Fernanda Alves Dorella; Flávia Souza Rocha; Anderson Miyoshi; Vasco Azevedo; Maria Paula Cruz Schneider; Artur Silva; Thereza Cristina Ferreira Camello; Priscila Soares Sabbadini; Cíntia Silva Santos; Louisy Sanches dos Santos; Raphael Hirata; Ana Luiza Mattos-Guaraldi; Androulla Efstratiou; Michael P. Schmitt; Hung Ton-That; Andreas Tauch

Corynebacterium diphtheriae is one of the most prominent human pathogens and the causative agent of the communicable disease diphtheria. The genomes of 12 strains isolated from patients with classical diphtheria, endocarditis, and pneumonia were completely sequenced and annotated. Including the genome of C. diphtheriae NCTC 13129, we herewith present a comprehensive comparative analysis of 13 strains and the first characterization of the pangenome of the species C. diphtheriae. Comparative genomics showed extensive synteny and revealed a core genome consisting of 1,632 conserved genes. The pangenome currently comprises 4,786 protein-coding regions and increases at an average of 65 unique genes per newly sequenced strain. Analysis of prophages carrying the diphtheria toxin gene tox revealed that the toxoid vaccine producer C. diphtheriae Park-Williams no. 8 has been lysogenized by two copies of the ω(tox)(+) phage, whereas C. diphtheriae 31A harbors a hitherto-unknown tox(+) corynephage. DNA binding sites of the tox-controlling regulator DtxR were detected by genome-wide motif searches. Comparative content analysis showed that the DtxR regulons exhibit marked differences due to gene gain, gene loss, partial gene deletion, and DtxR binding site depletion. Most predicted pathogenicity islands of C. diphtheriae revealed characteristics of horizontal gene transfer. The majority of these islands encode subunits of adhesive pili, which can play important roles in adhesion of C. diphtheriae to different host tissues. All sequenced isolates contain at least two pilus gene clusters. It appears that variation in the distributed genome is a common strategy of C. diphtheriae to establish differences in host-pathogen interactions.


Applied and Environmental Microbiology | 2002

Controlled Production of Stable Heterologous Proteins in Lactococcus lactis

Anderson Miyoshi; I. Poquet; Vasco Azevedo; Jacqueline Commissaire; Luis G. Bermúdez-Humarán; E. Domakova; Y. Le Loir; Sergio C. Oliveira; Alexandra Gruss; P. Langella

ABSTRACT The use of Lactococcus lactis (the most extensively characterized lactic acid bacterium) as a delivery organism for heterologous proteins is, in some cases, limited by low production levels and poor-quality products due to surface proteolysis. In this study, we combined in one L. lactis strain use of the nisin-inducible promoter PnisA and inactivation of the extracellular housekeeping protease HtrA. The ability of the mutant strain, designated htrA-NZ9000, to produce high levels of stable proteins was confirmed by using the staphylococcal nuclease (Nuc) and the following four heterologous proteins fused or not fused to Nuc that were initially unstable in wild-type L. lactis strains: (i) Staphylococcus hyicus lipase, (ii) the bovine rotavirus antigen nonstructural protein 4, (iii) human papillomavirus antigen E7, and (iv) Brucella abortus antigen L7/L12. In all cases, protein degradation was significantly lower in strain htrA-NZ9000, demonstrating the usefulness of this strain for stable heterologous protein production.


Journal of Biotechnology | 2011

Use of superoxide dismutase and catalase producing lactic acid bacteria in TNBS induced Crohn's disease in mice.

Jean Guy LeBlanc; Silvina del Carmen; Anderson Miyoshi; Vasco Azevedo; Fernando Sesma; Philippe Langella; Luis G. Bermúdez-Humarán; Laurie Watterlot; Gabriela Perdigón; Alejandra de Moreno de LeBlanc

Reactive oxygen species are involved in various aspects of intestinal inflammation and tumor development. Decreasing their levels using antioxidant enzymes, such as catalase (CAT) or superoxide dismutase (SOD) could therefore be useful in the prevention of certain diseases. Lactic acid bacteria (LAB) are ideal candidates to deliver these enzymes in the gut. In this study, the anti-inflammatory effects of CAT or SOD producing LAB were evaluated using a trinitrobenzenesulfonic acid (TNBS) induced Crohns disease murine model. Engineered Lactobacillus casei BL23 strains producing either CAT or SOD, or the native strain were given to mice before and after intrarectal administration of TNBS. Animal survival, live weight, intestinal morphology and histology, enzymatic activities, microbial translocation to the liver and cytokines released in the intestinal fluid were evaluated. The mice that received CAT or SOD-producing LAB showed a faster recovery of initial weight loss, increased enzymatic activities in the gut and lesser extent of intestinal inflammation compared to animals that received the wild-type strain or those that did not receive bacterial supplementation. Our findings suggest that genetically engineered LAB that produce antioxidant enzymes could be used to prevent or decrease the severity of certain intestinal pathologies.


PLOS ONE | 2011

Evidence for Reductive Genome Evolution and Lateral Acquisition of Virulence Functions in Two Corynebacterium pseudotuberculosis Strains

Jeronimo C. Ruiz; Vívian D'Afonseca; Artur Silva; Amjad Ali; Anne Cybelle Pinto; Anderson Rodrigues dos Santos; Aryanne A. M. C. Rocha; Débora O. Lopes; Fernanda Alves Dorella; Luis G. C. Pacheco; Marcília Pinheiro da Costa; Meritxell Zurita Turk; Núbia Seyffert; Pablo M. R. O. Moraes; Siomar de Castro Soares; Sintia Almeida; Thiago Luiz de Paula Castro; Vinicius Augusto Carvalho de Abreu; Eva Trost; Jan Baumbach; Andreas Tauch; Maria Paula Cruz Schneider; John Anthony McCulloch; Louise Teixeira Cerdeira; Rommel Thiago Jucá Ramos; Adhemar Zerlotini; Anderson J. Dominitini; Daniela M. Resende; Elisângela Monteiro Coser; Luciana Márcia Oliveira

Background Corynebacterium pseudotuberculosis, a Gram-positive, facultative intracellular pathogen, is the etiologic agent of the disease known as caseous lymphadenitis (CL). CL mainly affects small ruminants, such as goats and sheep; it also causes infections in humans, though rarely. This species is distributed worldwide, but it has the most serious economic impact in Oceania, Africa and South America. Although C. pseudotuberculosis causes major health and productivity problems for livestock, little is known about the molecular basis of its pathogenicity. Methodology and Findings We characterized two C. pseudotuberculosis genomes (Cp1002, isolated from goats; and CpC231, isolated from sheep). Analysis of the predicted genomes showed high similarity in genomic architecture, gene content and genetic order. When C. pseudotuberculosis was compared with other Corynebacterium species, it became evident that this pathogenic species has lost numerous genes, resulting in one of the smallest genomes in the genus. Other differences that could be part of the adaptation to pathogenicity include a lower GC content, of about 52%, and a reduced gene repertoire. The C. pseudotuberculosis genome also includes seven putative pathogenicity islands, which contain several classical virulence factors, including genes for fimbrial subunits, adhesion factors, iron uptake and secreted toxins. Additionally, all of the virulence factors in the islands have characteristics that indicate horizontal transfer. Conclusions These particular genome characteristics of C. pseudotuberculosis, as well as its acquired virulence factors in pathogenicity islands, provide evidence of its lifestyle and of the pathogenicity pathways used by this pathogen in the infection process. All genomes cited in this study are available in the NCBI Genbank database (http://www.ncbi.nlm.nih.gov/genbank/) under accession numbers CP001809 and CP001829.


Applied and Environmental Microbiology | 2009

Lactococcus lactis Expressing either Staphylococcus aureus Fibronectin-Binding Protein A or Listeria monocytogenes Internalin A Can Efficiently Internalize and Deliver DNA in Human Epithelial Cells

Valeria Guimarães; Anderson Miyoshi; Vasco Azevedo; Philippe Langella; Jean-Marc Chatel; François Lefèvre

ABSTRACT Lactococci are noninvasive bacteria frequently used as protein delivery vectors and, more recently, as in vitro and in vivo DNA delivery vehicles. We previously showed that a functional eukaryotic enhanced green fluorescent protein (eGFP) expression plasmid vector was delivered in epithelial cells by Lactococcus lactis producing Listeria monocytogenes internalin A (L. lactis InlA+), but this strategy is limited in vivo to transgenic mice and guinea pigs. In this study, we compare the internalization ability of L. lactis InlA+ and L. lactis producing either the fibronectin-binding protein A of Staphylococcus aureus (L. lactis FnBPA+) or its fibronectin binding domains C and D (L. lactis CD+). L. lactis FnBPA+ and L. lactis InlA+ showed comparable internalization rates in Caco-2 cells, while the internalization rate observed with L. lactis CD+ was lower. As visualized by conventional and confocal fluorescence microscopy, large clusters of L. lactis FnBPA+, L. lactis CD+, and L. lactis InlA+ were present in the cytoplasm of Caco-2 cells after internalization. Moreover, the internalization rates of Lactobacillus acidophilus NCFM and of an NCFM mutant strain with the gene coding for the fibronectin-binding protein (fbpA) inactivated were also evaluated in Caco-2 cells. Similar low internalization rates were observed for both wild-type L. acidophilus NCFM and the fbpA mutant, suggesting that commensal fibronectin binding proteins have a role in adhesion but not in invasion. L. lactis FnBPA+, L. lactis CD+, and L. lactis InlA+ were then used to deliver a eukaryotic eGFP expression plasmid in Caco-2 cells: flow cytometry analysis showed that the highest percentage of green fluorescent Caco-2 cells was observed after coculture with either L. lactis FnBPA+ or L. lactis InlA+. Analysis of the in vivo efficiency of these invasive recombinant strains is currently in progress to validate their potential as DNA vaccine delivery vehicles.


BMC Genomics | 2011

Comparative analysis of two complete Corynebacterium ulcerans genomes and detection of candidate virulence factors.

Eva Trost; Arwa Al-Dilaimi; Panagiotis Papavasiliou; Jessica Schneider; Andreas Burkovski; Siomar de Castro Soares; Sintia Almeida; Fernanda Alves Dorella; Anderson Miyoshi; Vasco Azevedo; Maria Paula Cruz Schneider; Artur Silva; Cíntia Silva Santos; Louisy Sanches dos Santos; Priscila Soares Sabbadini; Alexandre A.S.O. Dias; Raphael Hirata; Ana Luiza Mattos-Guaraldi; Andreas Tauch

BackgroundCorynebacterium ulcerans has been detected as a commensal in domestic and wild animals that may serve as reservoirs for zoonotic infections. During the last decade, the frequency and severity of human infections associated with C. ulcerans appear to be increasing in various countries. As the knowledge of genes contributing to the virulence of this bacterium was very limited, the complete genome sequences of two C. ulcerans strains detected in the metropolitan area of Rio de Janeiro were determined and characterized by comparative genomics: C. ulcerans 809 was initially isolated from an elderly woman with fatal pulmonary infection and C. ulcerans BR-AD22 was recovered from a nasal sample of an asymptomatic dog.ResultsThe circular chromosome of C. ulcerans 809 has a total size of 2,502,095 bp and encodes 2,182 predicted proteins, whereas the genome of C. ulcerans BR-AD22 is 104,279 bp larger and comprises 2,338 protein-coding regions. The minor difference in size of the two genomes is mainly caused by additional prophage-like elements in the C. ulcerans BR-AD22 chromosome. Both genomes show a highly similar order of orthologous coding regions; and both strains share a common set of 2,076 genes, demonstrating their very close relationship. A screening for prominent virulence factors revealed the presence of phospholipase D (Pld), neuraminidase H (NanH), endoglycosidase E (EndoE), and subunits of adhesive pili of the SpaDEF type that are encoded in both C. ulcerans genomes. The rbp gene coding for a putative ribosome-binding protein with striking structural similarity to Shiga-like toxins was additionally detected in the genome of the human isolate C. ulcerans 809.ConclusionsThe molecular data deduced from the complete genome sequences provides considerable knowledge of virulence factors in C. ulcerans that is increasingly recognized as an emerging pathogen. This bacterium is apparently equipped with a broad and varying set of virulence factors, including a novel type of a ribosome-binding protein. Whether the respective protein contributes to the severity of human infections (and a fatal outcome) remains to be elucidated by genetic experiments with defined bacterial mutants and host model systems.


BMC Microbiology | 2010

Diversity of lactic acid bacteria of the bioethanol process

Brígida T. Luckwu de Lucena; Billy Manoel dos Santos; João Ls Moreira; Ana Paula B. Moreira; Álvaro Cantini Nunes; Vasco Azevedo; Anderson Miyoshi; Fabiano L. Thompson; Marcos Antonio de Morais

BackgroundBacteria may compete with yeast for nutrients during bioethanol production process, potentially causing economic losses. This is the first study aiming at the quantification and identification of Lactic Acid Bacteria (LAB) present in the bioethanol industrial processes in different distilleries of Brazil.ResultsA total of 489 LAB isolates were obtained from four distilleries in 2007 and 2008. The abundance of LAB in the fermentation tanks varied between 6.0 × 105 and 8.9 × 108 CFUs/mL. Crude sugar cane juice contained 7.4 × 107 to 6.0 × 108 LAB CFUs. Most of the LAB isolates belonged to the genus Lactobacillus according to rRNA operon enzyme restriction profiles. A variety of Lactobacillus species occurred throughout the bioethanol process, but the most frequently found species towards the end of the harvest season were L. fermentum and L. vini. The different rep-PCR patterns indicate the co-occurrence of distinct populations of the species L. fermentum and L. vini, suggesting a great intraspecific diversity. Representative isolates of both species had the ability to grow in medium containing up to 10% ethanol, suggesting selection of ethanol tolerant bacteria throughout the process.ConclusionsThis study served as a first survey of the LAB diversity in the bioethanol process in Brazil. The abundance and diversity of LAB suggest that they have a significant impact in the bioethanol process.

Collaboration


Dive into the Anderson Miyoshi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fernanda Alves Dorella

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Artur Silva

Federal University of Maranhão

View shared research outputs
Top Co-Authors

Avatar

Siomar de Castro Soares

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sintia Almeida

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Anderson Rodrigues dos Santos

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean Guy LeBlanc

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge