Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andone Estonba is active.

Publication


Featured researches published by Andone Estonba.


Molecular Ecology Resources | 2010

Permanent Genetic Resources added to Molecular Ecology Resources Database 1 October 2009–30 November 2009

Aluana Gonçalves Abreu; Aitor Albaina; Tilman J. Alpermann; Vanessa E. Apkenas; S. Bankhead-Dronnet; Sara Bergek; Michael L. Berumen; Chang-Hung Cho; Jean Clobert; Aurélie Coulon; D. De Feraudy; Andone Estonba; Thomas Hankeln; Axel Hochkirch; Tsai-Wen Hsu; Tsurng-Juhn Huang; Xabier Irigoien; M. Iriondo; Kathleen M. Kay; Tim Kinitz; Linda Kothera; Maxime Le Hénanff; F. Lieutier; Olivier Lourdais; Camila M. T. Macrini; C. Manzano; C. Martin; Veronica R. F. Morris; Gerrit B. Nanninga; M. A. Pardo

This article documents the addition of 411 microsatellite marker loci and 15 pairs of Single Nucleotide Polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Acanthopagrus schlegeli, Anopheles lesteri, Aspergillus clavatus, Aspergillus flavus, Aspergillus fumigatus, Aspergillus oryzae, Aspergillus terreus, Branchiostoma japonicum, Branchiostoma belcheri, Colias behrii, Coryphopterus personatus, Cynogolssus semilaevis, Cynoglossus semilaevis, Dendrobium officinale, Dendrobium officinale, Dysoxylum malabaricum, Metrioptera roeselii, Myrmeciza exsul, Ochotona thibetana, Neosartorya fischeri, Nothofagus pumilio, Onychodactylus fischeri, Phoenicopterus roseus, Salvia officinalis L., Scylla paramamosain, Silene latifo, Sula sula, and Vulpes vulpes. These loci were cross‐tested on the following species: Aspergillus giganteus, Colias pelidne, Colias interior, Colias meadii, Colias eurytheme, Coryphopterus lipernes, Coryphopterus glaucofrenum, Coryphopterus eidolon, Gnatholepis thompsoni, Elacatinus evelynae, Dendrobium loddigesii Dendrobium devonianum, Dysoxylum binectariferum, Nothofagus antarctica, Nothofagus dombeyii, Nothofagus nervosa, Nothofagus obliqua, Sula nebouxii, and Sula variegata. This article also documents the addition of 39 sequencing primer pairs and 15 allele specific primers or probes for Paralithodes camtschaticus.


Apidologie | 2007

Gene flow within the M evolutionary lineage of Apis mellifera: role of the Pyrenees, isolation by distance and post-glacial re-colonization routes in the western Europe

Irati Miguel; Mikel Iriondo; Lionel Garnery; Walter S. Sheppard; Andone Estonba

We present a population genetic study focused on the two subspecies of the M evolutionary lineage, A. m. mellifera and A. m. iberiensis. Nuclear and mtDNA variation was analysed in 27 bee populations from the Iberian Peninsula, France and Belgium. Microsatellite data provides compelling evidence of a barrier to neutral gene flow at the Pyrenees. In addition, they suggest isolation by distance between populations of the M lineage. Mitochondrial data support the hypothesis that the Iberian Peninsula served as glacial refugia for the honeybees of western Europe. They show two paths of post-glacial re-colonization in the extremes of the Pyrenees and suggest that the western path was more significant in the post-glacial re-colonization process. Thus, we report here on three main factors for mellifera and iberiensis subspecies differentiation: the Pyrenean barrier, isolation by distance and the post-glacial re-colonization process.ZusammenfassungDie Unterarten der Honigbiene (Apis mellifera) werden in die 5 evolutionäre Linien A (African), C (northern Mediterranean), M (western Europe), O (Oriental) and Y (Yemenitica) gruppiert. Die in dieser Studie untersuchte evolutionäre Linie M enthält zwei Unterarten: A. m. mellifera wird von Frankreich bis zu den Bergen des Ural gefunden und A. m. iberiensis ist auf der iberischen Halbinsel verbreitet. Obwohl allgemein angenommen wird, dass die Pyrenäen ein bedeutendes Hindernis für den Genfluss zwischen A. m. mellifera und A. m. iberiensis darstellt, wurde ein solcher Barriereeffekt bislang nicht nachgewiesen. Die Existenz genetischer Gefälle vom Süden der Iberischen Halbinsel bis zum nördlichen Europa und eine ungewisse taxonomische Zuordnung einiger Populationen in den Pyrenäen tragen zu der Unsicherheit bezüglich der Rolle der Pyrenäen als genetische Barriere bei. Andererseits wird seit längerem angenommen, dass die Iberische Halbinsel während der Eiszeit als Refugium für die westliche Honigbiene diente (Ruttner, 1952, 1988) und eine nacheiszeitliche Wiederbesiedlung von Nordeuropa wird von mehreren Autoren unterstützt (Garnery et al., 1998a,b; Franck et al., 1998, 2000b). Gegenstand dieser Untersuchung war es, einen potentiell isolierenden Effekt der Pyrenäen nachzuweisen, neue Daten zu dem Differenzierungsprozess der zwei Unterarten beizutragen und den Ablauf der Wiederbesiedlung zu untersuchen. Wir untersuchten 1398 Völker aus 27 Populationen der Iberischen Halbinsel sowie aus Frankreich und Belgien auf Variation an 10 Mikrosatellitenloci und der COI-COII intergenischen Region der mtDNA. Wir verwendeten verschiedene Arten statistischer Analysen wie die DA genetische Distanzmatrix, neighbor-joining trees, Korrelationen erster Ordnung und partielle Korrelationen, AMOVA, Analyse räumlicher Autokorrelationen und COCOPAN für Mikrosatellitendaten. Die Ergebnisse zeigten eine Isolation zwischen den verschiedenen Populationen der M Linie durch die Entfernung auf und lieferten sehr deutliche Hinweise auf eine Barriere für den neutralen Genfluß bei den Pyrenäen. Die Verteilung der mtDNA Haplotypen bestätigte das Iberische Refugium der Westeuropäischen Honigbiene in der Eiszeit. Wir konnten zwei verschiedene Wege der nacheiszeitlichen Wiederbesiedlung von der Iberischen Halbinsel aus an den beiden Enden der Pyrenäen ableiten. Es gab deutliche Unterschiede in der Verteilung der Mitotypen zwischen den westlichen und östlichen Enden der Pyrenäen, diese legten nahe, dass der westliche Weg für den nacheiszeitlichen Widerbesiedlungsprozess wichtiger war. Nach der in dieser Untersuchung beobachteten hohen Variabilität der M Mitotypen südlich der Pyrenäen könnten diese eine nützliche genetische Ressource für die Konservation der Westeuropäischen Honigbienen darstellen. Der nacheiszeitliche Wiederbesiedlungsverlauf, die Isolation durch die Entfernung und die von den Pyrenäen gebildete Verbreitungsbarriere sind Einflüsse, die zu der Ausbildung der Unterarten A. m. mellifera und A. m. iberiensis beigetragen haben.


Apidologie | 2011

Both geometric morphometric and microsatellite data consistently support the differentiation of the Apis mellifera M evolutionary branch

Irati Miguel; Michel Baylac; Mikel Iriondo; Carmen Manzano; Lionel Garnery; Andone Estonba

Traditional morphometrics, allozymes, and mitochondrial data have supported a close relationship between the M branch subspecies A. m. iberiensis and the North African subspecies (A branch). However, studies using nuclear DNA markers have revealed a clear distinction between the latter and the two European M branch subspecies. In help resolve this paradox, we analyzed 663 colonies from six European and African subspecies. A geometric morphometrics approach was applied to the analysis of wing shape, and the results were compared with data of six microsatellite loci. Both data sets were found to be highly consistent and corroborated a marked divergence of West European subspecies from North African ones. This supports the hypothesis that the presence of the African lineage mitotype in Iberian honey bee populations is likely the consequence of secondary introductions, with a minimal African influence within the current Iberian genetic background. Wing geometric morphometrics appears more appropriate than mitochondrial DNA analysis or traditional morphometrics in the screening and identification of the Africanization process.


PLOS ONE | 2012

Multiple SNP Markers Reveal Fine-Scale Population and Deep Phylogeographic Structure in European Anchovy (Engraulis encrasicolus L.)

Iratxe Zarraonaindia; Mikel Iriondo; Aitor Albaina; Miguel Angel Pardo; Carmen Manzano; W. Stewart Grant; Xabier Irigoien; Andone Estonba

Geographic surveys of allozymes, microsatellites, nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) have detected several genetic subdivisions among European anchovy populations. However, these studies have been limited in their power to detect some aspects of population structure by the use of a single or a few molecular markers, or by limited geographic sampling. We use a multi-marker approach, 47 nDNA and 15 mtDNA single nucleotide polymorphisms (SNPs), to analyze 626 European anchovies from the whole range of the species to resolve shallow and deep levels of population structure. Nuclear SNPs define 10 genetic entities within two larger genetically distinctive groups associated with oceanic variables and different life-history traits. MtDNA SNPs define two deep phylogroups that reflect ancient dispersals and colonizations. These markers define two ecological groups. One major group of Iberian-Atlantic populations is associated with upwelling areas on narrow continental shelves and includes populations spawning and overwintering in coastal areas. A second major group includes northern populations in the North East (NE) Atlantic (including the Bay of Biscay) and the Mediterranean and is associated with wide continental shelves with local larval retention currents. This group tends to spawn and overwinter in oceanic areas. These two groups encompass ten populations that differ from previously defined management stocks in the Alboran Sea, Iberian-Atlantic and Bay of Biscay regions. In addition, a new North Sea-English Channel stock is defined. SNPs indicate that some populations in the Bay of Biscay are genetically closer to North Western (NW) Mediterranean populations than to other populations in the NE Atlantic, likely due to colonizations of the Bay of Biscay and NW Mediterranean by migrants from a common ancestral population. Northern NE Atlantic populations were subsequently established by migrants from the Bay of Biscay. Populations along the Iberian-Atlantic coast appear to have been founded by secondary waves of migrants from a southern refuge.


Human Genetics | 2010

High-density SNP genotyping detects homogeneity of Spanish and French Basques, and confirms their genomic distinctiveness from other European populations

Naiara Rodríguez-Ezpeleta; Jon Álvarez-Busto; Liher Imaz; Maria Regueiro; María Nerea Azcárate; Roberto Bilbao; Mikel Iriondo; Ana María Sainz Gil; Andone Estonba; Ana M. Aransay

A recent study reported that Basques do not constitute a genetically distinct population, and that Basques from Spanish and French provinces do not show significant genetic similarity. These conclusions disagree with numerous previous studies, and are not consistent with the historical and linguistic evidence that supports the distinctiveness of Basques. In order to further investigate this controversy, we have genotyped 83 Spanish Basque individuals and used these data to infer population structure based on more than 60,000 single nucleotide polymorphisms of several European populations. Here, we present the first high-throughput analysis including Basques from Spanish and French provinces, and show that all Basques constitute a homogeneous group that can be clearly differentiated from other European populations.


PLOS ONE | 2013

SNP Discovery in European Anchovy (Engraulis encrasicolus, L) by High-Throughput Transcriptome and Genome Sequencing

Iratxe Montes; Darrell Conklin; Aitor Albaina; Simon Creer; Gary R. Carvalho; Maria José Santos; Andone Estonba

Increased throughput in sequencing technologies has facilitated the acquisition of detailed genomic information in non-model species. The focus of this research was to discover and validate SNPs derived from the European anchovy (Engraulis encrasicolus) transcriptome, a species with no available reference genome, using next generation sequencing technologies. A cDNA library was constructed from four tissues of ten fish individuals corresponding to three populations of E. encrasicolus, and Roche 454 GS FLX Titanium sequencing yielded 19,367 contigs. Additionally, the European anchovy genome was sequenced for the same ten individuals using an Illumina HiSeq2000. Using a computational pipeline for combining transcriptome and genome information, a total of 18,994 SNPs met the necessary minor allele frequency and depth filters. A series of further stringent filters were applied to identify those SNPs likely to succeed in genotyping assays, and for filtering of those in potential duplicated genome regions. A novel method for detecting potential intron-exon boundaries in areas of putative SNPs has also been applied in silico to improve genotyping success. In all, 2,317 filtered putative transcriptome SNPs suitable for genotyping primer design were identified. From those, a subset of 530 were selected, with the genotyping results showing the highest reported conversion and validation rates (91.3% and 83.2%, respectively) reported to date for a non-model species. This study represents a promising strategy to discover genotypable SNPs in the exome of non-model organisms. The genomic resource generated for E. encrasicolus, both in terms of sequences and novel markers, will be informative for research into this species with applications including traceability studies, population genetic analyses and aquaculture.


Animal Genetics | 2010

Genetic association between bovine NOD2 polymorphisms and infection by Mycobacterium avium subsp. paratuberculosis in Holstein‐Friesian cattle

Otsanda Ruiz-Larrañaga; J.M. Garrido; Mikel Iriondo; Carmen Manzano; E. Molina; Ad P. Koets; Victor P.M.G. Rutten; Ramón A. Juste; Andone Estonba

Nucleotide-Binding Oligomerization Domain 2 (NOD2) has been reported to be a candidate gene for Mycobacterium avium subsp. paratuberculosis (MAP) infection in a Bos taurus × Bos indicus mixed breed based on a genetic association with the c.2197T>C single nucleotide polymorphism (SNP). Nevertheless, this SNP has also been reported to be monomorphic in the B. taurus species. In the present work, 18 SNPs spanning the bovine NOD2 gene have been analysed in a genetic association study of two independent populations of Holstein-Friesian cattle. We found that the C allele of SNP c.*1908C>T, located in the 3′-UTR region of the gene, is significantly more frequent in infected animals than in healthy ones, which supports the idea that the bovine NOD2 gene plays a role in susceptibility to MAP infection. However, in silico analyses of the NOD2 nucleotide sequence did not yield definitive data about a possible direct effect of SNP c.*1908C>T on susceptibility to infection and led us to consider its linkage disequilibrium with the causative variant. A more exhaustive genetic association study including all putative, functional SNPs from this gene and subsequent functional analyses needs to be conducted to achieve a more complete understanding of how different variants of NOD2 may affect susceptibility to MAP infection in cattle.


Molecular Ecology Resources | 2012

Permanent Genetic Resources added to Molecular Ecology Resources Database 1 October 2011 - 30 November 2011: PERMANENT GENETIC RESOURCES NOTEM

Aluana Gonçalves Abreu; Aitor Albaina; Tilman J. Alpermann; Vanessa E. Apkenas; S. Bankhead-Dronnet; Sara Bergek; Michael L. Berumen; Chang-Hung Cho; Jean Clobert; Aurélie Coulon; D. De Feraudy; Andone Estonba; Thomas Hankeln; Axel Hochkirch; Tsai-Wen Hsu; Tsurng-Juhn Huang; Xabier Irigoien; M. Iriondo; Kathleen M. Kay; Tim Kinitz; Linda Kothera; Maxime Le Hénanff; F. Lieutier; Olivier Lourdais; Camila Menezes Trindade Macrini; C. Manzano; C. Martin; Veronica R. F. Morris; Gerrit B. Nanninga; M. A. Pardo

This article documents the addition of 139 microsatellite marker loci and 90 pairs of single‐nucleotide polymorphism sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Aglaoctenus lagotis, Costus pulverulentus, Costus scaber, Culex pipiens, Dascyllus marginatus, Lupinus nanus Benth, Phloeomyzus passerini, Podarcis muralis, Rhododendron rubropilosum Hayata var. taiwanalpinum and Zoarces viviparus. These loci were cross‐tested on the following species: Culex quinquefasciatus, Rhododendron pseudochrysanthum Hay. ssp. morii (Hay.) Yamazaki and R. pseudochrysanthum Hayata. This article also documents the addition of 48 sequencing primer pairs and 90 allele‐specific primers for Engraulis encrasicolus.


Ecology and Evolution | 2016

18S rRNA V9 metabarcoding for diet characterization: a critical evaluation with two sympatric zooplanktivorous fish species

Aitor Albaina; Mikel Aguirre; David Abad; Mar ıa Santos; Andone Estonba

Abstract The potential of the 18S rRNA V9 metabarcoding approach for diet assessment was explored using MiSeq paired‐end (PE; 2 × 150 bp) technology. To critically evaluate the method′s performance with degraded/digested DNA, the diets of two zooplanktivorous fish species from the Bay of Biscay, European sardine (Sardina pilchardus) and European sprat (Sprattus sprattus), were analysed. The taxonomic resolution and quantitative potential of the 18S V9 metabarcoding was first assessed both in silico and with mock and field plankton samples. Our method was capable of discriminating species within the reference database in a reliable way providing there was at least one variable position in the 18S V9 region. Furthermore, it successfully discriminated diet between both fish species, including habitat and diel differences among sardines, overcoming some of the limitations of traditional visual‐based diet analysis methods. The high sensitivity and semi‐quantitative nature of the 18S V9 metabarcoding approach was supported by both visual microscopy and qPCR‐based results. This molecular approach provides an alternative cost and time effective tool for food‐web analysis.


Journal of Dairy Science | 2010

SP110 as a novel susceptibility gene for Mycobacterium avium subspecies paratuberculosis infection in cattle

Otsanda Ruiz-Larrañaga; J.M. Garrido; Mikel Iriondo; Carmen Manzano; E. Molina; I. Montes; P. Vazquez; Ad P. Koets; Victor P.M.G. Rutten; Ramón A. Juste; Andone Estonba

The intracellular pathogen resistance 1 (Ipr1) gene has been reported to play a role in mediating innate immunity in a mouse model of Mycobacterium tuberculosis infection, and polymorphisms of its human ortholog, SP110 nuclear body protein, have been suggested to be associated with tuberculosis. Thus, the bovine SP110 gene was considered to be a promising candidate for a genetic association study of bovine paratuberculosis, or Johnes disease, a chronic granulomatous enteritis caused by Mycobacterium avium ssp. paratuberculosis (MAP). Initially, single nucleotide polymorphisms (SNP) within the bovine SP110 gene were identified, and subsequently a population-based genetic association study was carried out. Seventeen new SNP along the SP110 gene were identified in Holstein-Friesian cattle, and 6 more were compiled from public databases. A total of 14 SNP were included in the association study of 2 independent populations. The SNP c.587A>G was found to be significantly associated with MAP infection, with the major allele A appearing to confer greater disease susceptibility in one of the analyzed populations. In addition, 2 haplotypes containing this SNP were also found to be associated with infection in the same population. The SNP c.587A>G is a nonsynonymous mutation that causes an amino acid change in codon 196 from asparagine to serine. In silico analyses point to SNP c.587A>G as a putative causal variant for susceptibility to MAP infection. The elucidation of the precise mechanism by which this SNP can exert its effect in the protein and, as a result, in the risk of infection, requires future functional analyses. Likewise, the absence of genetic association in one of the analyzed populations renders it necessary to carry out this study in other independent populations, with the aim of substantiating the repeatability of the present results. Nevertheless, the present results deepen our understanding of the genetic basis of susceptibility and resistance mechanisms related to MAP infection in cattle and, in turn, constitute a step forward toward the implementation of marker-assisted selection in breeding programs aimed at controlling paratuberculosis.

Collaboration


Dive into the Andone Estonba's collaboration.

Top Co-Authors

Avatar

Mikel Iriondo

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Carmen Manzano

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Iratxe Montes

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Aitor Albaina

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Otsanda Ruiz-Larrañaga

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fernando Rendo

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Lionel Garnery

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Irati Miguel

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Mikel Aguirre

University of the Basque Country

View shared research outputs
Researchain Logo
Decentralizing Knowledge