Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andonis Karachitos is active.

Publication


Featured researches published by Andonis Karachitos.


Biochemical Pharmacology | 2010

Mitochondria and calcium flux as targets of neuroprotection caused by minocycline in cerebellar granule cells

Eva Maria Garcia-Martinez; Sara Sanz-Blasco; Andonis Karachitos; Manuel J. Bández; F.J. Fernandez-Gomez; Sergio Perez-Alvarez; Raquel M. Melero-Fernández de Mera; Maria J. Jordan; Norberto Aguirre; Maria F. Galindo; Carlos Villalobos; Ana Navarro; Hanna Kmita; Joaquín Jordán

Minocycline, an antibiotic of the tetracycline family, has attracted considerable interest for its theoretical therapeutic applications in neurodegenerative diseases. However, the mechanism of action underlying its effect remains elusive. Here we have studied the effect of minocycline under excitotoxic conditions. Fluorescence and bioluminescence imaging studies in rat cerebellar granular neuron cultures using fura2/AM and mitochondria-targeted aequorin revealed that minocycline, at concentrations higher than those shown to block inflammation and inflammation-induced neuronal death, inhibited NMDA-induced cytosolic and mitochondrial rises in Ca(2+) concentrations in a reversible manner. Moreover, minocycline added in the course of NMDA stimulation decreased Ca(2+) intracellular levels, but not when induced by depolarization with a high K(+) medium. We also found that minocycline, at the same concentrations, partially depolarized mitochondria by about 5-30 mV, prevented mitochondrial Ca(2+) uptake under conditions of environmental stress, and abrogated NMDA-induced reactive oxygen species (ROS) formation. Consistently, minocycline also abrogates the rise in ROS induced by 75 microM Ca(2+) in isolated brain mitochondria. In search for the mechanism of mitochondrial depolarization, we found that minocycline markedly inhibited state 3 respiration of rat brain mitochondria, although distinctly increased oxygen uptake in state 4. Minocycline inhibited NADH-cytochrome c reductase and cytochrome c oxidase activities, whereas the activity of succinate-cytochrome c reductase was not modified, suggesting selective inhibition of complexes I and IV. Finally, minocycline affected activity of voltage-dependent anion channel (VDAC) as determined in the reconstituted system. Taken together, our results indicate that mitochondria are a critical factor in minocycline-mediated neuroprotection.


Biochimica et Biophysica Acta | 2010

Communication between mitochondria and nucleus: Putative role for VDAC in reduction/oxidation mechanism

Hanna Gałgańska; Andonis Karachitos; Małgorzata Wojtkowska; Olgierd Stobienia; Małgorzata Budzińska; Hanna Kmita

Voltage dependent anion channel (VDAC) was identified in 1976 and since that time has been extensively studied. It is well known that VDAC transports metabolites across the outer mitochondrial membrane. The simple transport function is indispensable for proper mitochondria functions and, consequently for cell activity, and makes VDAC crucial for a range of cellular processes including ATP rationing, Ca2+ homeostasis and apoptosis execution. Here, we review recent data obtained for Saccharomyces cerevisiae cells used as a model system concerning the putative role of VDAC in communication between mitochondria and the nucleus. The S. cerevisiae VDAC isoform known as VDAC1 (termed here YVDAC) mediates the cytosol reduction/oxidation (redox) state that contributes to regulation of expression and activity of cellular proteins including proteins that participate in protein import into mitochondria and antioxidant enzymes. Simultaneously, copper-and-zinc-containing superoxide dismutase (CuZnSOD) plays an important role in controlling YVDAC activity and expression levels. Thus, it is proposed that VDAC constitutes an important component of a regulatory mechanism based on the cytosol redox state.


Journal of Bioenergetics and Biomembranes | 2009

The TOM complex is involved in the release of superoxide anion from mitochondria

Małgorzata Budzińska; Hanna Gałgańska; Andonis Karachitos; Małgorzata Wojtkowska; Hanna Kmita

Available data indicate that superoxide anion (O2•− ) is released from mitochondria, but apart from VDAC (voltage dependent anion channel), the proteins involved in its transport across the mitochondrial outer membrane still remain elusive. Using mitochondria of the yeast Saccharomyces cerevisiae mutant depleted of VDAC (Δpor1 mutant) and the isogenic wild type, we studied the role of the TOM complex (translocase of the outer membrane) in the efflux of O2•− from the mitochondria. We found that blocking the TOM complex with the fusion protein pb2-DHFR decreased O2•− release, particularly in the case of Δpor1 mitochondria. We also observed that the effect of the TOM complex blockage on O2•− release from mitochondria coincided with the levels of O2•− release as well as with levels of Tom40 expression in the mitochondria. Thus, we conclude that the TOM complex participates in O2•− release from mitochondria.


FEBS Letters | 2009

Cu,Zn-superoxide dismutase is necessary for proper function of VDAC in Saccharomyces cerevisiae cells

Andonis Karachitos; Hanna Gałgańska; Małgorzata Wojtkowska; Małgorzata Budzińska; Olgierd Stobienia; Grzegorz Bartosz; Hanna Kmita

Available data suggest that a copper‐and zinc‐containing dismutase (CuZnSOD) plays a significant role in protecting eukaryotic cells against oxidative modifications which may contribute to cell aging. Here we demonstrated that depletion of CuZnSOD in Saccharomyces cerevisiae cells (Δ sod1 cells) affected distinctly channel activity of VDAC (voltage dependent anion selective channel) and resulted in a moderate reduction in VDAC levels as well as in levels of protein crucial for VDAC import into mitochondria, namely Tob55/Sam50 and Tom40. The observed alterations may result in mitochondriopathy and subsequently in the shortening of the replicative life span observed for S. cerevisiae Δ sod1 cells.


Pharmacological Research | 2012

Minocycline exerts uncoupling and inhibiting effects on mitochondrial respiration through adenine nucleotide translocase inhibition

Maria D. Cuenca-Lopez; Andonis Karachitos; Luca Massarotto; Paulo J. Oliveira; Norberto Aguirre; Maria F. Galindo; Hanna Kmita; Joaquín Jordán

The present study was aimed to provide a better understanding of the mitochondria-targeted actions of minocycline (MC), a second-generation tetracycline which has cytoprotective effects. Although the specific mechanisms underlying its activity remained elusive, considerable amounts of data indicated mitochondria as the primary pharmacological target of MC. Previous reports have shown that MC affects the oxygen-uptake rate by isolated mitochondria in different respiratory states. Here, we report on the effect of MC, in the range 50-200μM, on mitochondrial respiration. State 3 respiration titration with carboxyatractyloside revealed that MC inhibits the adenine nucleotide translocase. Furthermore, we analyze MC channel-forming capacity in the lipid membrane bilayer. Our results confirmed the crucial role of Δψ and showed a dependence on Ca(2+) for MC to have an effect on mitochondria. Our data also indicated that outer and inner mitochondrial membranes contribute differently to this effect, involving the presence of Δψ (the inner membrane) and VDAC (the outer membrane). Data from three isosmotic media indicate that MC does not increase the permeability of the inner membrane to protons or potassium. In addition, by using mitoplasts and ruthenium red, we showed that Ca(2+) uptake is not involved in the MC effect, suggesting involvement of VDAC in the MC interaction with the outer membrane. Our data contribute to unravel the mechanisms behind the mitochondria-targeted activity of the cytoprotective drug MC.


Current Drug Targets | 2012

Minocycline Mediated Mitochondrial Cytoprotection: Premises for Therapy of Cerebrovascular and Neurodegenerative Diseases

Andonis Karachitos; Julián Solís-García del Pozo; Piet W. J. de Groot; Hanna Kmita; Joaquín Jordán

In the last decades, emerging molecular targets for ischemic neuroprotection and regeneration have been postulated. This fact allowed that classical drugs with well established therapeutic applications might be used in cerebrovascular diseases as well as neurodegenerative diseases. Minocycline is a commonly used antibiotic of the tetracycline family (7-dimethylamino-6-dimethyl-6-deoxytetracycline) which reveals cytoprotective capability and potential use in treatment of different diseases. Here, we discuss the literature concerning minocycline. The available data indicate that the antibiotic has multi-faceted effects on cell functions and, consequently, a number of clinical properties that are useful and/or could be useful for treatment of different diseases including bacterial infections, cancer, autoimmune disorders, ischemia as well as neurodegenerative and psychiatric diseases. Thus, application of minocycline as a therapeutic agent is the subject of clinical trials for various diseases. It is also evident that minocycline-mediated cytoprotection, including neuroprotection, is an important aspect of its clinical application. Here, we have reviewed the basis of the minocycline activity as well as different studies indicating that minocycline can be used as potential therapeutic agent in both cerebrovascular and neurodegenerative diseases in human.


Genome Biology and Evolution | 2012

Phylogenetic Analysis of Mitochondrial Outer Membrane β-Barrel Channels

Małgorzata Wojtkowska; Marcin Jąkalski; Joanna R. Pieńkowska; Olgierd Stobienia; Andonis Karachitos; Teresa M. Przytycka; January Weiner; Hanna Kmita; Wojciech Makalowski

Transport of molecules across mitochondrial outer membrane is pivotal for a proper function of mitochondria. The transport pathways across the membrane are formed by ion channels that participate in metabolite exchange between mitochondria and cytoplasm (voltage-dependent anion-selective channel, VDAC) as well as in import of proteins encoded by nuclear genes (Tom40 and Sam50/Tob55). VDAC, Tom40, and Sam50/Tob55 are present in all eukaryotic organisms, encoded in the nuclear genome, and have β-barrel topology. We have compiled data sets of these protein sequences and studied their phylogenetic relationships with a special focus on the position of Amoebozoa. Additionally, we identified these protein-coding genes in Acanthamoeba castellanii and Dictyostelium discoideum to complement our data set and verify the phylogenetic position of these model organisms. Our analysis show that mitochondrial β-barrel channels from Archaeplastida (plants) and Opisthokonta (animals and fungi) experienced many duplication events that resulted in multiple paralogous isoforms and form well-defined monophyletic clades that match the current model of eukaryotic evolution. However, in representatives of Amoebozoa, Chromalveolata, and Excavata (former Protista), they do not form clearly distinguishable clades, although they locate basally to the plant and algae branches. In most cases, they do not posses paralogs and their sequences appear to have evolved quickly or degenerated. Consequently, the obtained phylogenies of mitochondrial outer membrane β-channels do not entirely reflect the recent eukaryotic classification system involving the six supergroups: Chromalveolata, Excavata, Archaeplastida, Rhizaria, Amoebozoa, and Opisthokonta.


European Journal of Pharmacology | 2010

Viability of Saccharomyces cerevisiae cells following exposure to H2O2 and protective effect of minocycline depend on the presence of VDAC

Hanna Gałgańska; Andonis Karachitos; Małgorzata Baranek; Małgorzata Budzińska; Joaquín Jordán; Hanna Kmita

Proteins involved in apoptosis are still a matter of debate. Therefore, we decided to check the effect of the presence of VDAC (voltage dependent anion selective channel) on viability of Saccharomyces cerevisiae cells following their exposure to H(2)O(2) that is known to induce apoptosis both in S. cerevisiae and in mammalian cells. Mitochondria of S. cerevisiae contain only one channel-forming VDAC isoform (VDAC1), which simplifies studies on the channel. Using S. cerevisiae mutant depleted of VDAC1 (termed here VDAC) and the isogenic wild type, we have shown that VDAC is important for protection of S. cerevisiae cells against H(2)O(2) treatment, particularly in exponential growth phase that is known to be more affected by H(2)O(2). The increased viability of H(2)O(2) pretreated exponentially growing cells containing VDAC was accompanied by clear changes of the cytosol redox state and was potentiated by minocycline, an antibiotic of the tetracycline family that displays cytoprotective potency. The protective effect of minocycline also coincided with distinct changes of cytosol redox state. Thus, we conclude that the ability to change the cytosol redox state following exposure to H(2)O(2) or/and minocycline appears to be an intrinsic feature of exponentially growing cells (young cells) containing VDAC. Moreover, the ability seems to be crucial for both cell viability and protective effect of minocycline.


Journal of Bioenergetics and Biomembranes | 2012

Cytoprotective activity of minocycline includes improvement of mitochondrial coupling: the importance of minocycline concentration and the presence of VDAC

Andonis Karachitos; Joaquín Jordán; Hanna Kmita

Available data indicate that minocycline, an antibiotic of the tetracycline family, has cytoprotective properties due to a direct interaction with mitochondria. Yet, the data in the case of isolated mitochondria suggest discrepant or even detrimental effect(s) of the interaction. We have studied the cytoprotective activity displayed by minocycline in the case of the yeast Saccharomyces cerevisiae cells pretreated with H2O2. We demonstrated that the activity of minocycline required the presence of VDAC (voltage-dependent anion-selective channel) and provided distinct improvement of mitochondrial coupling. In the case of isolated mitochondria, we verified that minocycline exhibited uncoupler activity when applied in micromolar concentrations. However, when added in nanomolar concentrations, minocycline was able to improve the level of coupling for isolated mitochondria. The coupling improvement effect was observed in mitochondria containing VDAC but not in Δpor1 mitochondria (depleted of VDAC1, termed here VDAC) and in both types of mitoplasts. Thus, properly low concentrations of minocycline within the cell in the vicinity of VDAC-containing mitochondria enable the improvement of energy coupling of mitochondria that contributes to cytoprotective activity of minocycline.


Mitochondrion | 2016

Human VDAC isoforms differ in their capability to interact with minocycline and to contribute to its cytoprotective activity.

Andonis Karachitos; Daria Grobys; Monika Antoniewicz; Sylwia Jedut; Joaquín Jordán; Hanna Kmita

It has been previously demonstrated that cytoprotective activity displayed by minocycline in the case of the yeast Saccharomyces cerevisiae cells pretreated with H2O2 requires the presence of functional VDAC (YVDAC1). Thus, we decided to transform YVDAC1-depleted yeast cells (Δpor1 cells) with plasmids expressing human VDAC isoforms (HVDAC1, HVDAC2, HVDAC3) to estimate their involvement in the minocycline cytoprotective effect. We observed that only expression of HVDAC3 in Δpor1 cells provided minocycline-mediated cytoprotection against H2O2 although all human isoforms are functional in Δpor1 cells. The observation appears to be important for on-going discussion concerning VDAC isoform roles in mitochondria and cell functioning.

Collaboration


Dive into the Andonis Karachitos's collaboration.

Top Co-Authors

Avatar

Hanna Kmita

Adam Mickiewicz University in Poznań

View shared research outputs
Top Co-Authors

Avatar

Małgorzata Wojtkowska

Adam Mickiewicz University in Poznań

View shared research outputs
Top Co-Authors

Avatar

Olgierd Stobienia

Adam Mickiewicz University in Poznań

View shared research outputs
Top Co-Authors

Avatar

Daria Grobys

Adam Mickiewicz University in Poznań

View shared research outputs
Top Co-Authors

Avatar

Hanna Gałgańska

Adam Mickiewicz University in Poznań

View shared research outputs
Top Co-Authors

Avatar

Małgorzata Budzińska

Adam Mickiewicz University in Poznań

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monika Antoniewicz

Adam Mickiewicz University in Poznań

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge