Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andor J. Kiss is active.

Publication


Featured researches published by Andor J. Kiss.


The Journal of Experimental Biology | 2004

Cold-stable eye lens crystallins of the Antarctic nototheniid toothfish Dissostichus mawsoni Norman

Andor J. Kiss; Amir Y. Mirarefi; Subramanian Ramakrishnan; Charles F. Zukoski; Arthur L. DeVries; C.-H. Christina Cheng

SUMMARY The eye lenses of the Antarctic nototheniid fishes that inhabit the perennially freezing Antarctic seawater are transparent at –2°C, whereas the cold-sensitive mammalian and tropical fish lenses display cold-induced cataract at 20°C and 7°C, respectively. No cold-cataract occurs in the giant Antarctic toothfish Dissostichus mawsoni lens when cooled to temperatures as low as –12°C, indicating highly cold-stable lens proteins. To investigate this cold stability, we characterised the lens crystallin proteins of the Antarctic toothfish, in parallel with those of the sub-tropical bigeye tuna Thunnus obesus and the endothermic cow Bos taurus, representing three disparate thermal climes (–2°C, 18°C and 37°C, respectively). Sizing chromatography resolved their lens crystallins into three groups,α /βH, β and γ, with γ crystallins being the most abundant (>40%) lens proteins in fish, in contrast to the cow lens where they comprise only 19%. The upper thermal stability of these crystallin components correlated with the body temperature of the species. In vitro chaperone assays showed that fish α crystallin can protect same-species γ crystallins from heat denaturation, as well as lysozyme from DTT-induced unfolding, and therefore are small Heat Shock Proteins (sHSP) like their mammalian counterparts. Dynamic light scattering measured an increase in size of αγ crystallin mixtures upon heating, which supports formation of the αγ complex as an integral part of the chaperone process. Surprisingly, in cross-species chaperone assays, tunaα crystallins only partly protected toothfish γ crystallins, while cow α crystallins completely failed to protect, indicating partial and no αγ interaction, respectively. Toothfish γ was likely to be the component that failed to interact, as the supernatant from a cowα plus toothfish γ incubation could chaperone cow γ crystallins in a subsequent heat incubation, indicating the presence of uncomplexed cow α. This suggests that the inability of toothfish γ crystallins to fully complex with tuna α, and not at all with the cowα crystallins, may have its basis in adaptive changes in the protein that relate to the extreme cold-stability of the toothfish lens.


The Journal of Experimental Biology | 2011

The protective role of aquaporins in the freeze-tolerant insect Eurosta solidaginis: functional characterization and tissue abundance of EsAQP1

Benjamin N. Philip; Andor J. Kiss; Richard E. Lee

SUMMARY The movement of water and small solutes is integral to the survival of freezing and desiccation in insects, yet the underlying mechanisms of these processes are not fully known. Recent evidence suggests that aquaporin (AQP) water channels play critical roles in protecting cells from osmotic damage during freezing and desiccation. Our study sequenced, functionally characterized and measured the tissue abundance of an AQP from freeze-tolerant larvae of the gall fly, Eurosta solidaginis (Diptera: Tephritidae). The newly characterized EsAQP1 contains two NPA motifs and six transmembrane regions, and is phylogenetically related to an AQP from the anhydrobiotic chironomid Polypedilum vanderplanki. Using a Xenopus laevis oocyte swelling assay, we demonstrated that EsAQP1 increases water permeability to nine times that of simple diffusion through the membrane. In contrast to its high water permeability, EsAQP1 was impermeable to both glycerol and urea. The abundance of EsAQP1 increased from October to December in all tissues tested and was most abundant in the brain of winter larvae. Because the nervous system is thought to be the primary site of freezing injury, EsAQP1 may cryoprotect the brain from damage associated with water imbalance. The sequence, phylogenetic relationship, osmotic permeability, tissue distribution and seasonal abundance of EsAQP1 further support the role of AQPs in promoting freezing tolerance.


BMC Biotechnology | 2014

A comparison of commercially-available automated and manual extraction kits for the isolation of total RNA from small tissue samples

Marlo K. Sellin Jeffries; Andor J. Kiss; Austin W. Smith; James T. Oris

BackgroundThis study compared the performance of five commercially available kits in extracting total RNA from small eukaryotic tissue samples (<15 mg). Total RNA was isolated from fathead minnow (Pimephales promelas) tissues (spleen, blood, kidney, embryo, and larvae) using the Qiagen RNeasy® Plus Mini, Qiagen RNeasy® Plus Universal, Promega Maxwell® 16 LEV simplyRNA, Ambion MagMAX™-96 and Promega SimplyRNA HT kits. Kit performance was evaluated via measures of RNA quantity (e.g., total RNA amount) and quality (e.g., ratio of absorbance at 260 and 280 nm, RNA integrity number (RIN), presence of gDNA).ResultsWith the exception of embryos, each kit generally extracted ≥5 μg of total RNA from each sample. With regard to RNA quality, the RINs of RNA samples isolated via the Plus Mini and Maxwell® 16 kits were consistently higher than those of samples extracted via the remaining three kits and for all tissues, these kits produced intact RNA with average RIN values ≥7. The Plus Universal and SimplyRNA HT kits produced moderately degraded (RIN values <7, but ≥5), while the RNA recovered via the MagMAX™ kit tended to exhibit a high degree of degradation (RIN values <5).ConclusionsEach kit was generally capable of extracting the amount of RNA required for most downstream gene expression applications suggesting that RNA yield is unlikely to be a limiting factor for any of the kits evaluated. However, differences in the quality of RNA extracted via each of the kits indicate that these kits may differ in their ability to yield RNA acceptable for some applications. Overall, the findings of this study demonstrate that there are practical differences between commercially available RNA extraction kits that should be taken into account when selecting extraction methods to be used for isolating RNA designated for gene expression analysis.


International Journal of Molecular Sciences | 2011

Seasonal variation in the hepatoproteome of the dehydration- and freeze-tolerant wood frog, Rana sylvatica

Andor J. Kiss; Timothy J. Muir; Richard E. Lee; Jon P. Costanzo

Winter’s advent invokes physiological adjustments that permit temperate ectotherms to cope with stresses such as food shortage, water deprivation, hypoxia, and hypothermia. We used liquid chromatography (LC) in combination with tandem mass spectrometry (MS/MS) quantitative isobaric (iTRAQ™) peptide mapping to assess variation in the abundance of hepatic proteins in summer- and winter-acclimatized wood frogs (Rana sylvatica), a northerly-distributed species that tolerates extreme dehydration and tissue freezing during hibernation. Thirty-three unique proteins exhibited strong seasonal lability. Livers of winter frogs had relatively high levels of proteins involved in cytoprotection, including heat-shock proteins and an antioxidant, and a reduced abundance of proteins involved in cell proliferation, protein synthesis, and mitochondrial function. They also exhibited altered levels of certain metabolic enzymes that participate in the biochemical reorganization associated with aphagia and reliance on energy reserves, as well as the freezing mobilization and post-thaw recovery of glucose, an important cryoprotective solute in freezing adaptation.


PLOS ONE | 2012

Functional validation of hydrophobic adaptation to physiological temperature in the small heat shock protein αA-crystallin.

Mason Posner; Andor J. Kiss; Jackie Skiba; Amy Drossman; Monika B. Dolinska; J. Fielding Hejtmancik; Yuri V. Sergeev

Small heat shock proteins (sHsps) maintain cellular homeostasis by preventing stress and disease-induced protein aggregation. While it is known that hydrophobicity impacts the ability of sHsps to bind aggregation-prone denaturing proteins, the complex quaternary structure of globular sHsps has made understanding the significance of specific changes in hydrophobicity difficult. Here we used recombinant protein of the lenticular sHsp α A-crystallin from six teleost fishes environmentally adapted to temperatures ranging from -2°C to 40°C to identify correlations between physiological temperature, protein stability and chaperone-like activity. Using sequence and structural modeling analysis we identified specific amino acid differences between the warm adapted zebrafish and cold adapted Antarctic toothfish that could contribute to these correlations and validated the functional consequences of three specific hydrophobicity-altering amino acid substitutions in αA-crystallin. Site directed mutagenesis of three residues in the zebrafish (V62T, C143S, T147V) confirmed that each impacts either protein stability or chaperone-like activity or both, with the V62T substitution having the greatest impact. Our results indicate a role for changing hydrophobicity in the thermal adaptation of α A-crystallin and suggest ways to produce sHsp variants with altered chaperone-like activity. These data also demonstrate that a comparative approach can provide new information about sHsp function and evolution.


Biochimica et Biophysica Acta | 2010

Small-angle X-ray scattering studies of the intact eye lens: Effect of crystallin composition and concentration on microstructure

Amir Y. Mirarefi; Sébastien Boutet; Subramanian Ramakrishnan; Andor J. Kiss; C.-H. Christina Cheng; Arthur L. DeVries; Ian K. Robinson; Charles F. Zukoski

BACKGROUND The cortex and nucleus of eye lenses are differentiated by both crystallin protein concentration and relative distribution of three major crystallins (alpha, beta, and gamma). Here, we explore the effects of composition and concentration of crystallins on the microstructure of the intact bovine lens (37 degrees C) along with several lenses from Antarctic fish (-2 degrees C) and subtropical bigeye tuna (18 degrees C). METHODS Our studies are based on small-angle X-ray scattering (SAXS) investigations of the intact lens slices where we study the effect of crystallin composition and concentration on microstructure. RESULTS We are able to distinguish the nuclear and cortical regions by the development of a characteristic peak in the intensity of scattered X-rays. For both the bovine and fish lenses, the peak corresponds to that expected for dense suspensions of alpha-crystallins. CONCLUSIONS The absence of the scattering peak in the nucleus indicates that there is no characteristic wavelength for density fluctuations in the nucleus although there is liquid-like order in the packing of the different crystallins. The loss in peak is due to increased polydispersity in the sizes of the crystallins and due to the packing of the smaller gamma-crystallins in the void space of alpha-crystallins. GENERAL SIGNIFICANCE Our results provide an understanding for the low turbidity of the eye lens that is a mixture of different proteins. This will inform design of optically transparent suspensions that can be used in a number of applications (e.g., artificial liquid lenses) or to better understand human diseases pathologies such as cataract.


Comparative Biochemistry and Physiology Part D: Genomics and Proteomics | 2008

Molecular diversity and genomic organisation of the α, β and γ eye lens crystallins from the Antarctic toothfish Dissostichus mawsoni

Andor J. Kiss; C.-H. Christina Cheng

The eye lens of the Antarctic toothfish living in the -2 degrees C Southern Ocean is cold-stable. To investigate the molecular basis of this cold stability, we isolated, cloned and sequenced 22 full length crystallin cDNAs. We found two alpha crystallins (alphaA, alphaB), six beta crystallins (betaA1, betaA2, betaA4, betaB1, betaB2, betaB3) and 14 gamma crystallins (gammaN, gammaS1, gammaS2, gammaM1, gammaM3, gammaM4, gammaM5, gammaM7, gammaM8a, gammaM8b, gammaM8c, gammaM8d, gammaM8e, and gammaM9). Alignments of alpha, beta and gamma with other known crystallin sequences indicate that toothfish alpha and beta crystallins are relatively conserved orthologues of their vertebrate counterparts, but the toothfish and other fish gammaM crystallins form a distinct group that are not orthologous to mammalian gamma crystallins. A preliminary Fingerprinted Contig analysis of clones containing crystallin genes screened from a toothfish BAC library indicated alpha crystallin genes occurred in a single genomic region of ~266 kbp, beta crystallin genes in ~273 kbp, while the gamma crystallin gene family occurred in two separate regions of ~180 and ~296 kbp. In phylogenetic analysis, the gammaM isoforms of the ectothermic toothfish displayed a diversity not seen with endothermic mammalian gamma crystallins. Similar to other fishes, several toothfish gamma crystallins are methionine-rich (gammaM isoforms) which may have predisposed the toothfish lens to biochemically attenuate gamma crystallin hydrophobicity allowing for cold adaptation. In addition to high methionine content, conservation of alphabeta crystallins both in sequence and abundance suggests greater functional constraints relative to gamma crystallins. Conversely, reduced constraints upon gamma crystallins could have allowed for greater evolutionary plasticity resulting in increased polydispersity of gamma crystallins contributing to the cold-stability of the Antarctic toothfish lens.


Advances in Biology | 2014

Identification and Expression of a Putative Facilitative Urea Transporter in Three Species of True Frogs (Ranidae): Implications for Terrestrial Adaptation

Andrew J. Rosendale; Jon P. Costanzo; Andor J. Kiss; Richard E. Lee

Urea transporters (UTs) help mediate the transmembrane movement of urea and therefore are likely important in amphibian osmoregulation. Although UTs contribute to urea reabsorption in anuran excretory organs, little is known about the protein’s distribution and functions in other tissues, and their importance in the evolutionary adaptation of amphibians to their environment remains unclear. To address these questions, we obtained a partial sequence of a putative UT and examined relative abundance of this protein in tissues of the wood frog (Rana sylvatica), leopard frog (R. pipiens), and mink frog (R. septentrionalis), closely related species that are adapted to different habitats. Using immunoblotting techniques, we found the protein to be abundant in the osmoregulatory organs but also present in visceral organs, suggesting that UTs play both osmoregulatory and nonosmoregulatory roles in amphibians. UT abundance seems to relate to the species’ habitat preference, as levels of the protein were higher in the terrestrial R. sylvatica, intermediate in the semiaquatic R. pipiens, and quite low in the aquatic R. septentrionalis. These findings suggest that, in amphibians, UTs are involved in various physiological processes, including solute and water dynamics, and that they have played a role in adaptation to the osmotic challenges of terrestrial environments.


Archive | 2008

The Antarctic Toothfish

Andor J. Kiss

Publisher Summary This chapter discusses the Antarctic toothfish Dissostichus mawsoni as a model system for lens biology. One of the best-studied Antarctic fishes is the giant Antarctic toothfish Dissostichus mawsoni. This fish is especially well suited to the study of eye biology, as it is a large fish with a very large eye lens comparable to that of the well-characterized cow Bos taurus lens. The basic properties of the overall lens stability were investigated by whole lens cooling experiments as well as the basic biochemistry of the component proteins. Whole lens cooling experiments were performed on unfrozen lenses and were done in comparison with cow lens as well as a tropical marine blackbar soldierfish Myripristis jacobus lens. Mammalian lenses such as the cow lens demonstrate a cold sensitivity, known as a cold cataract. One of the strongest aspects of the toothfish as a model system is the ability to make meaningful comparisons. There is a sister species of the toothfish, the Patagonian toothfish Dissostichus eleginoides, which lives in warmer waters, temperature just above freezing, around the South Georgia Islands and further up along the coast of South America to coastal waters of Peru and Uruguay.


Journal of Comparative Physiology B-biochemical Systemic and Environmental Physiology | 2010

Comparative analysis of crystallins and lipids from the lens of Antarctic toothfish and cow

Andor J. Kiss; Arthur L. DeVries; Rachael M. Morgan-Kiss

Animal model systems of senile cataract and lens crystallin stability are essential to understand the complex nature of lens transparency. Our aim in this study was to assess the long-lived Antarctic toothfish Dissostichus mawsoni (Norman) as a model system to understand long-term lens clarity in terms of solubility changes that occur to crystallins. We compared the toothfish with the mammalian model cow lens, dissecting each species’ lens into a cortex and nuclear region. In addition to crystallin distribution, we also assayed fatty acid (FA) composition by negative ion electrospray ionization mass spectrometry (ESI-MS). The majority of toothfish lens crystallins from cortex (90.4%) were soluble, whereas only a third (31.8%) from the nucleus was soluble. Crystallin solubility analysis by SDS-PAGE and immunoblots revealed that relative proportions of crystallins in both soluble and urea-soluble fractions were similar within each species examined and in agreement with previous reports for bovine lens. From our data, we found that both toothfish and cow crystallins follow patterns of insolubility that mirror each animals lens composition with more γ crystallin aggregation seen in the toothfish lens nucleus than in cow. Toothfish lens lipids had a large amount of polyunsaturated fatty acids that were absent in cow resulting in an unsaturation index (IU) four-fold higher than that of cow. We identified a novel FA with a molecular mass of 267 mass units in the lens epithelial layer of the toothfish that accounted for well over 50% of the FA abundance. The unidentified lipid in the toothfish lens epithelia corresponds to either an odd-chain (17 carbons) FA or a furanoid. We conclude that long-lived fishes are likely good animal models of lens crystallin solubility and may model post-translational modifications and solubility changes better than short-lived animal models.

Collaboration


Dive into the Andor J. Kiss's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuri V. Sergeev

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. F. Hejtmancik

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge