Andor Kormányos
University of Konstanz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andor Kormányos.
arXiv: Mesoscale and Nanoscale Physics | 2015
Andor Kormányos; Guido Burkard; Martin Gmitra; Jaroslav Fabian; Viktor Zólyomi; Neil Drummond; Vladimir I. Fal’ko
We present k.p Hamiltonians parametrized by ab initio density functional theory calculations to describe the dispersion of the valence and conduction bands at their extrema (the K , Q , Γ , and M points of the hexagonal Brillouin zone) in atomic crystals of semiconducting monolayer transition metal dichalcogenides (TMDCs). We discuss the parametrization of the essential parts of the k.p[ Hamiltonians for MoS2 , MoSe2 , MoTe2 , WS2 , WSe2 , and WTe2 , including the spin-splitting and spin-polarization of the bands, and we briefly review the vibrational properties of these materials. We then use k.p theory to analyse optical transitions in two-dimensional TMDCs over a broad spectral range that covers the Van Hove singularities in the band structure (the M points). We also discuss the visualization of scanning tunnelling microscopy maps.
Physical Review Letters | 2015
David MacNeill; Colin Heikes; Kin Fai Mak; Zachary Anderson; Andor Kormányos; Viktor Zólyomi; Jiwoong Park; D. C. Ralph
Using polarization-resolved photoluminescence spectroscopy, we investigate the breaking of valley degeneracy by an out-of-plane magnetic field in back-gated monolayer MoSe2 devices. We observe a linear splitting of -0.22 meV/T between luminescence peak energies in σ+ and σ- emission for both neutral and charged excitons. The optical selection rules of monolayer MoSe2 couple the photon handedness to the exciton valley degree of freedom; so this splitting demonstrates valley degeneracy breaking. In addition, we find that the luminescence handedness can be controlled with a magnetic field to a degree that depends on the back-gate voltage. An applied magnetic field, therefore, provides effective strategies for control over the valley degree of freedom.
Physical Review B | 2013
Andor Kormányos; Viktor Zólyomi; Neil Drummond; Péter Rakyta; Guido Burkard; Vladimir I. Fal'ko
We use a combined ab initio calculations and k · p theory based approach to derive a low-energy effective Hamiltonian for monolayer MoS2 at the K point of the Brillouin zone. It captures the features which are present in first-principles calculations but not explained by the theory of Xiao et al. [Phys Rev Lett 108, 196802 (2012)], namely the trigonal warping of the valence and conduction bands, the electron-hole symmetry breaking, and the spin splitting of the conduction band. We also consider other points in the Brillouin zone which might be important for transport properties. Our findings lead to a more quantitative understanding of the properties of this material in the ballistic limit.
Physical Review X | 2014
Andor Kormányos; Viktor Zólyomi; Neil Drummond; Guido Burkard
We derive an effective Hamiltonian that describes the dynamics of electrons in the conduction band of monolayer transition metal dichalcogenides (TMDC) in the presence of perpendicular electric and magnetic fields. We discuss in detail both the intrinsic and the Bychkov-Rashba spin-orbit coupling induced by an external electric field. We point out interesting differences in the spin-split conduction band between different TMDC compounds. An important consequence of the strong intrinsic spin-orbit coupling is an effective out-of-plane g factor for the electrons that differs from the free-electron g factor g~=2. We identify a new term in the Hamiltonian of the Bychkov-Rashba spin-orbit coupling that does not exist in III-V semiconductors. Using first-principles calculations, we give estimates of the various parameters appearing in the theory. Finally, we consider quantum dots formed in TMDC materials and derive an effective Hamiltonian that allows us to calculate the magnetic field dependence of the bound states in the quantum dots. We find that all states are both valley and spin split, which suggests that these quantum dots could be used as valley-spin filters. We explore the possibility of using spin and valley states in TMDCs as quantum bits, and conclude that, due to the relatively strong intrinsic spin-orbit splitting in the conduction band, the most realistic option appears to be a combined spin-valley (Kramers) qubit at low magnetic fields.
Physical Review B | 2010
Péter Rakyta; Andor Kormányos; József Cserti
We study the electronic band structure of monolayer graphene when Rashba spin-orbit coupling is present. We show that if the Rashba spin-orbit coupling is stronger than the intrinsic spin-orbit coupling, the low-energy bands undergo trigonal-warping deformation and that for energies smaller than the Lifshitz energy, the Fermi circle breaks up into separate parts. The effect is very similar to what happens in bilayer graphene at low energies. We discuss the possible experimental implications, such as threefold increase in the minimal conductivity for low electron densities, anisotropic, wave-number-dependent spin splitting of the bands, and the spin-polarization structure.
Physical Review B | 2008
László Oroszlány; Péter Rakyta; Andor Kormányos; Colin J. Lambert; József Cserti
We study the dynamics of the electrons in a non-uniform magnetic field applied perpendicular to a graphene sheet in the low energy limit when the excitation states can be described by a Dirac type Hamiltonian. We show that as compared to the two-dimensional electron gas (2DEG) snake states in graphene exibit peculiar properties related to the underlying dynamics of the Dirac fermions. The current carried by snake states is locally uncompensated even if the Fermi energy lies between the first non-zero energy Landau levels of the conduction and valence bands. The nature of these states is studied by calculating the current density distribution. It is shown that besides the snake states in finite samples surface states also exist.
Physical Review B | 2010
Imre Hagymási; Andor Kormányos; József Cserti
We calculate the phase, the temperature and the junction length dependence of the supercurrent for ballistic graphene Josephson junctions. For low temperatures we find nonsinusoidal dependence of the supercurrent on the superconductor phase difference for both short and long junctions. The skewness, which characterizes the deviaton of the current-phase relation from a simple sinusoidal one, shows a linear dependence on the critical current for small currents. We discuss the similarities and differences with respect to the classical theory of Josephson junctions, where the weak link is formed by a diffusive or ballistic metal. The relation to other recent theoretical results on graphene Josephson junctions is pointed out and the possible experimental relevance of our work is considered as well.
Physical Review B | 2008
Andor Kormányos; Péter Rakyta; László Oroszlány; József Cserti
We derive semiclassical quantization equations for graphene monolayer and bilayer systems where the excitations are confined by the applied inhomogeneous magnetic field. The importance of a semiclassical phase, a consequence of the spinor nature of the excitations, is pointed out. The semiclassical eigenenergies show good agreement with the results of quantum-mechanical calculations based on the Dirac equation of graphene and with numerical tight-binding calculations.
Physical Review B | 2010
Péter Rakyta; Andor Kormányos; József Cserti; Pekka Koskinen
We study theoretically the coherent electron focusing in graphene nanoribbons. Using semiclassical and numerical tight-binding calculations we show that armchair edges give rise to equidistant peaks in the focusing spectrum. In the case of zigzag edges at low magnetic fields one can also observe focusing peaks but with increasing magnetic field a more complex interference structure emerges in the spectrum. This difference in the spectra can be observed even if the zigzag edge undergoes structural reconstruction. Therefore transverse electron focusing can help in the identification and characterization of the edge structure of graphene samples.
Applied Physics Letters | 2011
A. M. Gilbertson; Andor Kormányos; Philip Derek Buckle; M. Fearn; T. Ashley; Colin J. Lambert; S. A. Solin; L. F. Cohen
We report the room temperature observation of significant ballistic electron transport in shallow etched four-terminal mesoscopic devices fabricated on an InSb/AlInSb quantum well (QW) heterostructure with a crucial partitioned growth-buffer scheme. Ballistic electron transport is evidenced by a negative bend resistance signature which is quite clearly observed at 295 K and at current densities in excess of 10(6) A/cm(2). This demonstrates unequivocally that by using effective growth and processing strategies, room temperature ballistic effects can be exploited in InSb/AlInSb QWs at practical device dimensions.