Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andra Dedinaite is active.

Publication


Featured researches published by Andra Dedinaite.


Soft Matter | 2010

Friction in aqueous media tuned by temperature-responsive polymer layers

Andra Dedinaite; Esben Thormann; Geoffrey Olanya; Per M. Claesson; Bo Nyström; Anna-Lena Kjøniksen; Kaizheng Zhu

An atomic force microscope colloidal probe technique has been employed to probe normal and friction forces between silica surfaces coated with adsorbed layers of a diblock copolymer of the composition poly(N-isopropylacrylamide)48-block-poly(3-acrylamidopropyl)trimethylammonium chloride)20, abbreviated PNIPAAM48-b-PAMPTMA(+)20. The interactions between the PNIPAAM48-b-PAMPTMA(+)20-coated surfaces across a 0.1 mM NaCl (pH 6) solution at 25 °C are purely repulsive, due to a combination of steric and electrostatic double-layer forces. However, when the temperature is increased to 35 °C, and subsequently to 45 °C, an attractive force develops at short separations due to the unfavourable PNIPAAM–water interaction at these temperatures. The temperature-dependent polymer–water interaction has implications for the friction force between the layers. At 25 °C a frictional force that increases linearly with increasing load is observed once the surfaces are brought into close contact. At higher temperatures significantly higher friction forces appear as a consequence of attractive segment–segment interactions. Further, a clearly expressed hysteresis between friction forces encountered on loading and unloading is detected. Our results demonstrate that both normal and friction forces between surfaces can be controlled by temperature changes when temperature-responsive polymers are employed, and friction forces can be adjusted as required from low to high.


Langmuir | 2008

Interactions between chitosan and SDS at a low-charged silica substrate compared to interactions in the bulk--the effect of ionic strength.

Maria Lundin; Lubica Macakova; Andra Dedinaite; Per M. Claesson

The effect of ionic strength on association between the cationic polysaccharide chitosan and the anionic surfactant sodium dodecyl sulfate, SDS, has been studied in bulk solution and at the solid/liquid interface. Bulk association was probed by turbidity, electrophoretic mobility, and surface tension measurements. The critical aggregation concentration, cac, and the saturation binding of surfactants were estimated from surface tension data. The number of associated SDS molecules per chitosan segment exceeded one at both salt concentrations. As a result, a net charge reversal of the polymer-surfactant complexes was observed, between 1.0 and 1.5 mM SDS, independent of ionic strength. Phase separation occurs in the SDS concentration region where low charge density complexes form, whereas at high surfactant concentrations (up to several multiples of cmc SDS) soluble aggregates are formed. Ellipsometry and QCM-D were employed to follow adsorption of chitosan onto low-charged silica substrates, and the interactions between SDS and preadsorbed chitosan layers. A thin (0.5 nm) and rigid chitosan layer was formed when adsorbed from a 0.1 mM NaNO3 solution, whereas thicker (2 nm) chitosan layers with higher dissipation/unit mass were formed from solutions at and above 30 mM NaNO3. The fraction of solvent in the chitosan layers was high independent of the layer thickness and rigidity and ionic strength. In 30 mM NaNO3 solution, addition of SDS induced a collapse at low concentrations, while at higher SDS concentrations the viscoelastic character of the layer was recovered. Maximum adsorbed mass (chitosan + SDS) was reached at 0.8 times the cmc of SDS, after which surfactant-induced polymer desorption occurred. In 0.1 mM NaNO3, the initial collapse was negligible and further addition of surfactant lead to the formation of a nonrigid, viscoelastic polymer layer until desorption began above a surfactant concentration of 0.4 times the cmc of SDS.


Advances in Colloid and Interface Science | 2003

Polyelectrolytes as adhesion modifiers.

Per M. Claesson; Andra Dedinaite; Orlando J. Rojas

Adsorbed layers of polyelectrolytes have been studied with atomic force microscopy (AFM) and the interferometric surface force apparatus (SFA). Particular emphasis was put on determining the effect of the polyelectrolyte charge density on surface topography, and the effect of the polyelectrolyte coating on the adhesive properties. The AFM was employed to image individual polymer chains at low adsorption densities and to characterize the layer topography and coverage at higher adsorption densities. The adhesive properties between two polyelectrolyte-coated surfaces in air were determined as a function of the number of contacts made at any given spot. The data provide evidence for formation of electrostatic bridges, particularly when highly charged polyelectrolytes are used. Further, material transport between the surfaces is observed when the polyelectrolyte is either highly charged or have a very low charge density. For intermediate charge densities we could not observe any indication of material transfer. The adhesion between one polyelectrolyte-coated surface and one bare surface was initially higher than that between two polyelectrolyte-coated surfaces. However, due to material transfer between the two surfaces the adhesion decreased significantly with the number of times that the surfaces were driven into contact. For the polyelectrolytes of the lowest charge density the results suggest that entanglement effects contribute to the adhesive interaction. The modification of the adhesion by polyelectrolytes in practical systems such as in the case of dry-strength additives to improve paper resistance is also considered.


Langmuir | 2008

Mucin-Electrolyte Interactions at the Solid-Liquid Interface Probed by QCM-D

Zsombor Feldötö; Torbjörn Pettersson; Andra Dedinaite

The interaction between mucin and ions has been investigated by employing the quartz crystal microbalance technique with measurement of energy dissipation. The study was partially aimed at understanding the adsorption of mucin on surfaces with different chemistry, and for this purpose, surfaces exposing COOH, OH, and CH(3) groups were prepared. Mucin adsorbed to all three types of functionalized gold surfaces. Adsorption to the hydrophobic surface and to the charged hydrophilic surface (COOH) occured with high affinity despite the fact that in the latter case both mucin and the surface were negatively charged. On the uncharged hydrophilic surface exposing OH groups, the adsorption of mucin was very low. Another aim was to elucidate conformational changes induced by electrolytes on mucin layers adsorbed on hydrophobic surfaces from 30 mM NaNO(3). To this end, we investigated the effect of three electrolytes with increasing cation valance: NaCl, CaCl(2) and LaCl(3). At low NaCl concentrations, the preadsorbed layer expands, whereas at higher concentrations of NaCl the layer becomes more compact. This swelling/compacting of the mucin layer is fully reversible for NaCl. When the mucin layer instead is exposed to CaCl(2) or LaCl(3), compaction is observed at 1 mM. For CaCl(2), this process is only partially reversible, and for LaCl(3), the changes are irreversible within the time frame of the experiment. Finally, mucin interaction with the DTAB cationic surfactant in an aqueous solution of different electrolytes was evaluated with turbidimetry measurements. It is concluded that the electrolytes used in this work screen the association between mucin and DTAB and that the effect increases with increasing cation valency.


Langmuir | 2012

Electrostatically anchored branched brush layers.

Xiaoyan Liu; Andra Dedinaite; Mark W. Rutland; Esben Thormann; Ceslav Visnevskij; Per M. Claesson

A novel type of block copolymer has been synthesized. It consists of a linear cationic block and an uncharged bottle-brush block. The nonionic bottle-brush block contains 45 units long poly(ethylene oxide) side chains. This polymer was synthesized with the intention of creating branched brush layers firmly physisorbed to negatively charged surfaces via the cationic block, mimicking the architecture (but not the chemistry) of bottle-brush molecules suggested to be present on the cartilage surface, and contributing to the efficient lubrication of synovial joints. The adsorption properties of the diblock copolymer as well as of the two blocks separately were studied on silica surfaces using quartz crystal microbalance with dissipation monitoring (QCM-D) and optical reflectometry. The adsorption kinetics data highlight that the diblock copolymers initially adsorb preferentially parallel to the surface with both the cationic block and the uncharged bottle-brush block in contact with the surface. However, as the adsorption proceeds, a structural change occurs within the layer, and the PEO bottle-brush block extends toward solution, forming a surface-anchored branched brush layer. As the adsorption plateau is reached, the diblock copolymer layer is 46-48 nm thick, and the water content in the layer is above 90 wt %. The combination of strong electrostatic anchoring and highly hydrated branched brush structures provide strong steric repulsion, low friction forces, and high load bearing capacity. The strong electrostatic anchoring also provides high stability of preadsorbed layers under different ionic strength conditions.


Journal of Dispersion Science and Technology | 2010

Letter to the Editor: Friction between Surfaces—Polyacrylic Acid Brush and Silica—Mediated by Calcium Ions

Gunnar Dunér; Esben Thormann; Olof Ramström; Andra Dedinaite

With this letter, we report how friction can be controlled by inducing physical bonds solely within a polyelectrolyte brush layer, while keeping repulsive interactions between the brush layer and the bare surface that slides above. Our results imply that the nature of the bare surface is of minor importance as long as the repulsive surface interaction is maintained.


Langmuir | 2013

Nanostructured Composite Layers of Mussel Adhesive Protein and Ceria Nanoparticles

Olga Krivosheeva; Majid Sababi; Andra Dedinaite; Per M. Claesson

Mussel adhesive proteins are known for their high affinity to a range of different surfaces, and they therefore appear as ideal candidates for producing thin inorganic-organic composite films with high robustness. In this work we explore the possibility of making cohesive films utilizing layer-by-layer deposition of the highly positively charged mussel adhesive protein, Mefp-1, and negatively charged ceria nanoparticles. This particular material combination was chosen due to recent findings that such films provide good corrosion protection. Quartz crystal microbalance with dissipation monitoring (QCM-D) was used for following the film formation process in situ on silica surfaces. A close to linear growth of the film with number of deposited layers was found for up to 18 deposition steps, the highest number of depositions investigated in this work. The Mefp-1 concentration during film deposition affected the film properties, where a higher protein concentration resulted in a stiffer film. It was also found that the added mass could be amplified by using a Mefp-1 solution containing small aggregates. The surface nanomechanical properties of dried multilayer films were investigated using peak force QNM (quantitative nanomechanical mapping) in air. Homogeneous surface coverage was found under all conditions explored, and the Youngs modulus of the outer region of the coating increased when a higher Mefp-1 concentration was used during film deposition. The nature of the outermost surface layer was found to significantly affect the surface nanomechanical properties. The abrasion resistance of the coating was measured by using controlled-force contact mode AFM.


Journal of Colloid and Interface Science | 2015

Association of anionic surfactant and physisorbed branched brush layers probed by neutron and optical reflectometry

Xiaoyan Liu; Andra Dedinaite; Tommy Nylander; Aleksandra P. Dabkowska; Maximilian W. A. Skoda; Per M. Claesson

Pre-adsorbed branched brush layers were formed on silica surfaces by adsorption of a diblock copolymer consisting of a linear cationic block and an uncharged bottle-brush block. The charge of the silica surface was found to affect the adsorption, with lower amounts of the cationic polyelectrolyte depositing on less charged silica. Cleaning under basic conditions rendered surfaces more negatively charged (more negative zeta-potential) than acid cleaning and was therefore used to increase polyelectrolyte adsorption. The structure of adsorbed layers of the diblock copolymer was as determined by neutron reflectometry found to be about 70 nm thick and very water rich (97%). Interactions between the anionic surfactant sodium dodecylsulfate (SDS) and such pre-adsorbed diblock polymer layers were studied by neutron reflectometry and by optical reflectometry. Optical reflectometry was also used for deducing interactions between the individual blocks of the diblock copolymer and SDS at the silica/aqueous interface. We find that SDS is readily incorporated in the diblock copolymer layer at low SDS concentrations, and preferentially co-localized with the cationic block of the polymer next to the silica surface. At higher SDS concentrations some desorption of polyelectrolyte/surfactant complexes takes place.


Biomacromolecules | 2014

Comparison of a Brush-with-Anchor and a Train-of-Brushes Mucin on Poly(methyl methacrylate) Surfaces : Adsorption, Surface Forces, and Friction

Junxue An; Andra Dedinaite; Anki Nilsson; Jan Holgersson; Per M. Claesson

Interfacial properties of two types of mucins have been investigated at the aqueous solution/poly(methyl methacrylate) (PMMA) interface. One is commercially available bovine submaxillary mucin, BSM, which consists of alternating glycosylated and nonglycosylated regions. The other one is a recombinant mucin-type fusion protein, PSGL-1/mIgG2b, consisting of a glycosylated mucin part fused to the Fc part of an immunoglobulin. PSGL-1/mIgG2b is mainly expressed as a dimer upon production. A quartz crystal microbalance with dissipation was used to study the adsorption of the mucins to PMMA surfaces. The mass of the adsorbed mucin layers, including the adsorbed mucin and water trapped in the layer, was found to be significantly higher for PSGL-1/mIgG2b than for BSM. Atomic force microscopy with colloidal probe was employed to study interactions and frictional forces between mucin-coated PMMA surfaces. Purely repulsive forces of steric origin were observed between PSGL-1/mIgG2b mucin layers, whereas a small adhesion was detected between BSM layers and attributed to bridging. Both mucin layers reduced the friction force between PMMA surfaces in aqueous solution. The reduction was, however, significantly more pronounced for PSGL-1/mIgG2b. The effective friction coefficient between PSGL-1/mIgG2b-coated PMMA surfaces is as low as 0.02 at low loads, increasing to 0.24 at the highest load explored, 50 nN. In contrast, a friction coefficient of around 0.7 was obtained between BSM-coated PMMA surfaces. The large differences in interfacial properties for the two mucins are discussed in relation to their structural differences.


Langmuir | 2013

Kinetic and Equilibrium Aspects of Adsorption and Desorption of Class II Hydrophobins HFBI and HFBII at Silicon Oxynitride/Water and Air/Water Interfaces

Olga Krivosheeva; Andra Dedinaite; Markus B. Linder; Robert D. Tilton; Per M. Claesson

Hydrophobins are relatively small globular proteins produced by filamentous fungi. They display unusual high surface activity and are implied as mediators of attachment to surfaces, which has resulted in high scientific and technological interest. In this work we focus on kinetic and equilibrium aspects of adsorption and desorption properties of two representatives of class II hydrophobins, namely HFBI and HFBII, at a negatively charged hydrophilic solid/water interface and at the air/water interface. The layers formed at the air/liquid interface were examined in a Langmuir trough, whereas layers formed at the solid/liquid interface were studied using dual polarization interferometry (DPI) under different flow conditions. For comparison, another globular protein, lysozyme, was also investigated. It was found that both the adsorbed amount and the adsorption kinetics were different for HFBI and HFBII, and the adsorption behavior of both hydrophobins on the negatively charged surface displayed some unusual features. For instance, even though the adsorption rate for HFBI was slowed down with increasing adsorbed amount as expected from packing constraints at the interface, the adsorption kinetics curves for HFBII displayed a region indicating adsorption cooperativity. Further, it was found that hydrophobin layers formed under flow partly desorbed when the flow was stopped, and the desorption rate for HFBII was enhanced in the presence of hydrophobins in solution.

Collaboration


Dive into the Andra Dedinaite's collaboration.

Top Co-Authors

Avatar

Per M. Claesson

SP Technical Research Institute of Sweden

View shared research outputs
Top Co-Authors

Avatar

Esben Thormann

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Olga Krivosheeva

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Fan Zhang

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jinshan Pan

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Majid Sababi

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Gunnar Dunér

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Xiaoyan Liu

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Min Wang

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Torbjörn Pettersson

Royal Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge