András Erdőhelyi
University of Szeged
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by András Erdőhelyi.
Physical Chemistry Chemical Physics | 2014
P. Pusztai; R. Puskás; Erika Varga; András Erdőhelyi; Ákos Kukovecz; Zoltán Kónya; János Kiss
Gold nanoparticles were prepared and characterized on protonated (H-form) titanate nanotubes (TiONTs) and nanowires (TiONWs). The chemical nature and morphology of gold particles were monitored by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, X-ray diffraction (XRD) and high resolution electron microscopy (HRTEM). The optical properties of Au-containing titanate nanowires were explored by means of ultraviolet-visible diffuse reflectance spectroscopy. The size distribution and homogeneity of gold particles depend on the reduction mode from the corresponding gold salt to metal particles. Smaller clusters (3-8 nm) were obtained with the NaBH4 reactant at 293 K than with molecular hydrogen reduction. An unexpectedly high binding energy gold state was found by XPS in gold-loaded titanate nanostructures. This state was absent from the spectra of gold-loaded TiO2(110). A likely explanation for this phenomenon, supported also by the characteristic decrease of band gap energy from 3.10 eV to 2.74 eV with increasing Au content, is that depending on the metal loading and titanate structure, Au is stabilized on titanate nanowires partially in positively charged gold form by ion exchange and also as Au clusters. Our important new finding is that the thermal annealing behavior of Au-loaded titanate nanotubes and nanowires is different. The former lose their tubular morphology and are readily transformed into anatase even at a very low temperature of 473 K. On the other hand, gold stabilizes the layered structure of titanate nanowires up to 873 K.
Physical Chemistry Chemical Physics | 2013
Dániel Madarász; G. Pótári; András Sápi; B. László; C. Csudai; A. Oszkó; Ákos Kukovecz; András Erdőhelyi; Zoltán Kónya; János Kiss
Co nanoparticles were produced and characterized on protonated titanate nanowires. Co deposits were obtained after low-temperature decomposition of Co2(CO)8 on titanate nanostructures. The carbonylation was carried out by vapor-phase adsorption in a fluidized bed reactor and the decarbonylation processes were followed by FT-IR spectroscopy and microbalance combined with temperature programmed reaction mass spectrometry. The band gap of Co-decorated titanate nanostructures determined by UV-VIS diffuse reflectance spectroscopy decreased sharply from 3.14 eV to 2.41 eV with increasing Co content up to 2 wt%. The Co-decorated titanate morphology was characterized by high-resolution transmission electron microscopy (HRTEM) and electron diffraction (ED). The chemical environment of Co deposition was studied by photoelectron spectroscopy (XPS). A certain amount of cobalt underwent an ion exchange process. Higher cobalt loadings led to the formation of nanosized-dispersed particles complexed to oxygen vacancies. The average sizes were found to be mostly between 2 and 6 nm. This size distribution and the measured band gap could be favorable regimes for some important low-temperature thermal- and photo-induced catalytic reactions.
Physical Chemistry Chemical Physics | 2015
Erika Varga; P. Pusztai; László Óvári; A. Oszkó; András Erdőhelyi; Christian Papp; Hans-Peter Steinrück; Zoltán Kónya; János Kiss
The interaction of CeO2-supported Rh, Co and bimetallic Rh-Co nanoparticles, which are active catalysts in hydrogen production via steam reforming of ethanol, a process related to renewable energy generation, was studied by X-ray diffraction (XRD), high resolution electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and low energy ion scattering (LEIS). Furthermore, diffuse reflectance infrared spectroscopy (DRIFTS) of adsorbed CO as a probe molecule was used to characterize the morphology of metal particles. At small loadings (0.1%), Rh is in a much dispersed state on ceria, while at higher contents (1-5%), Rh forms 2-8 nm particles. Between 473-673 K pronounced oxygen transfer from ceria to Rh is observed and at 773 K significant agglomeration of Rh occurs. On reduced ceria, XPS indicates a possible electron transfer from Rh to ceria. The formation of smaller ceria crystallites upon loading with Co was concluded from XRD and HRTEM; for 10% Co, the CeO2 particle size decreased from 27.6 to 10.7 nm. A strong dissolution of Co into ceria and a certain extent of encapsulation by ceria were deduced by XRD, XPS and LEIS. In the bimetallic system, the presence of Rh enhances the reduction of cobalt and ceria. During thermal treatments, reoxidation of Co occurs, and Rh agglomeration as well as oxygen migration from ceria to Rh are hindered in the presence of cobalt.
Langmuir | 2016
Erika Varga; P. Pusztai; A. Oszkó; K. Baán; András Erdőhelyi; Zoltán Kónya; János Kiss
The effects of reduction by H2 and by heat treatment in vacuum and in O2 flow on Rh particle size changes of Rh/CeO2 samples were studied by X-ray photoelectron spectroscopy (XPS), high-resolution electron microscopy (HRTEM), and CO adsorption followed by diffuse reflectance infrared spectroscopy (DRIFTS). Low-temperature (373-423 K) reduction of Rh without agglomeration is demonstrated. An average particle size of 2.3 ± 1.1 nm was measured by HRTEM regardless of the metal loading (1-5%). On Rh/CeO2, a significant particle size increase of the Rh particles was detected on heating (773 K). In this work, we suggest that the temperature-induced surface decrease resulting from the sintering of Rh is favored only for well-dispersed particles. XP spectra revealed that the mobile oxygens of CeO2 fundamentally determine the oxidation state of the supported metals. At elevated temperature, the oxidation of the reduced support surface as well as the metal component takes place because of the segregation of ceria oxygens. When the aggregated particles were reoxidized, the redispersion of Rh was observed probably because of the formation of Rh-O-Ce bonds.
Topics in Catalysis | 2018
B. László; K. Baán; A. Oszkó; András Erdőhelyi; János Kiss; Zoltán Kónya
The photocatalytic transformation of methane-water mixture over Rh and Au catalysts supported on protonated (H-form) titanate nanotube (TNT) was investigated. The role of the catalyst structure was analyzed using titania reference support. Furthermore the effect of carbon-dioxide addition was also investigated. The catalysts were characterized by high resolution transmission electron microscopy and X-ray photoelectron spectroscopy (XPS). Photocatalytic tests were performed with a mercury-arc UV source illuminating a continuous flow quartz reactor which was attached to a mass spectrometer. The surface of the catalysts was analyzed by diffuse reflectance infrared spectroscopy during the photoreactions. The changes of the catalysts due to photocatalytic usage were investigated by XPS and temperature programmed reduction methods as well. Most of the methane was generally transformed to hydrogen and ethane, and a small amount of methanol was also formed. The carbon dioxide addition enhanced the rate of the photocatalytic transformation of methane on Rh/TNT with increasing the lifetime of the electron–hole pairs. Bigger gold particles with mainly plasmonic character were more active in the reactions due to the photo induced activation of the adsorbed water. Surface carbon deposits were identified on the catalysts after the photoreactions. More oxidized carbon formed on the Au-containing catalysts than on the ones with Rh.Graphical Abstract
Archive | 2012
András Erdőhelyi
The use of hydrogen for fuel cell application represents one of the most environmental friendly processes for the production of electric energy for automotives in the near future.
Catalysis Today | 2006
András Erdőhelyi; J. Raskó; T. Kecskés; M. Tóth; Márta Dömök; K. Baán
Applied Catalysis A-general | 2004
J. Raskó; A. Hancz; András Erdőhelyi
Applied Catalysis A-general | 2006
J. Raskó; M. Dömök; K. Baán; András Erdőhelyi
Journal of Catalysis | 2013
László Óvári; S. Krick Calderón; Yaroslava Lykhach; Jörg Libuda; András Erdőhelyi; Christian Papp; János Kiss; Hans-Peter Steinrück