Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andras Gyenis is active.

Publication


Featured researches published by Andras Gyenis.


Science | 2014

Ubiquitous Interplay Between Charge Ordering and High-Temperature Superconductivity in Cuprates

Eduardo H. da Silva Neto; Pegor Aynajian; A. Frano; Riccardo Comin; E. Schierle; E. Weschke; Andras Gyenis; Jinsheng Wen; J. A. Schneeloch; Z. Xu; Shimpei Ono; Genda Gu; Mathieu Le Tacon; Ali Yazdani

Besides superconductivity, copper-oxide high-temperature superconductors are susceptible to other types of ordering. We used scanning tunneling microscopy and resonant elastic x-ray scattering measurements to establish the formation of charge ordering in the high-temperature superconductor Bi2Sr2CaCu2O8+x. Depending on the hole concentration, the charge ordering in this system occurs with the same period as those found in Y-based or La-based cuprates and displays the analogous competition with superconductivity. These results indicate the similarity of charge organization competing with superconductivity across different families of cuprates. We observed this charge ordering to leave a distinct electron-hole asymmetric signature (and a broad resonance centered at +20 milli–electron volts) in spectroscopic measurements, indicating that it is likely related to the organization of holes in a doped Mott insulator. Surface and bulk measurements in bismuth-based cuprates agree and indicate a short-range charge order. [Also see Perspective by Morr] Copper-Oxide Superconductors Copper-oxide superconductors have a complex electronic structure. A charge density order has been observed in two cuprate families; however, it has been unclear whether such an order exists in Bi-based compounds (see the Perspective by Morr). Comin et al. (p. 390, published online 19 December) and da Silva Neto et al. (p. 393, published online 19 December) address this question in single-layer and double-layer Bibased cuprates, respectively. For both families of materials, surface measurements by scanning tunneling spectroscopy agree with bulk measurements obtained through resonant elastic x-ray scattering, which suggests the formation of short-range correlations that modulate the charge density of the carriers over a range of dopings. Thus, charge ordering may represent a common characteristic of the major cuprate families.


Nature Materials | 2014

Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2

Sangjun Jeon; Brian B. Zhou; Andras Gyenis; Benjamin E. Feldman; Itamar Kimchi; Andrew C. Potter; Quinn Gibson; R. J. Cava; Ashvin Vishwanath; Ali Yazdani

Condensed-matter systems provide a rich setting to realize Dirac and Majorana fermionic excitations as well as the possibility to manipulate them for potential applications. It has recently been proposed that chiral, massless particles known as Weyl fermions can emerge in certain bulk materials or in topological insulator multilayers and give rise to unusual transport properties, such as charge pumping driven by a chiral anomaly. A pair of Weyl fermions protected by crystalline symmetry effectively forming a massless Dirac fermion has been predicted to appear as low-energy excitations in a number of materials termed three-dimensional Dirac semimetals. Here we report scanning tunnelling microscopy measurements at sub-kelvin temperatures and high magnetic fields on the II-V semiconductor Cd3As2. We probe this system down to atomic length scales, and show that defects mostly influence the valence band, consistent with the observation of ultrahigh-mobility carriers in the conduction band. By combining Landau level spectroscopy and quasiparticle interference, we distinguish a large spin-splitting of the conduction band in a magnetic field and its extended Dirac-like dispersion above the expected regime. A model band structure consistent with our experimental findings suggests that for a magnetic field applied along the axis of the Dirac points, Weyl fermions are the low-energy excitations in Cd3As2.


Science | 2016

Quasiparticle interference of the Fermi arcs and surface-bulk connectivity of a Weyl semimetal

Hiroyuki Inoue; Andras Gyenis; Zhijun Wang; Jian Li; Seong Woo Oh; Shan Jiang; Ni Ni; B. Andrei Bernevig; Ali Yazdani

Sinking into the bulk of a Weyl semimetal A recently discovered class of topological materials, Weyl semimetals, have surface states in the form of so-called Fermi arcs. Inoue et al. used a high-resolution scanning tunneling microscope to explore the properties of these states in the material TaAs. They mapped the scattering of electrons off impurities on the surface of the material and compared the data to the predictions of density functional theory. The data could be reconciled with the theory only if electrons associated with Ta orbitals on the Fermi arcs sank into the bulk of the material. Science, this issue p. 1184 High-resolution scanning tunneling spectroscopy reveals the connection between the surface and bulk states in tantalum arsenide. Weyl semimetals host topologically protected surface states, with arced Fermi surface contours that are predicted to propagate through the bulk when their momentum matches that of the surface projections of the bulk’s Weyl nodes. We used spectroscopic mapping with a scanning tunneling microscope to visualize quasiparticle scattering and interference at the surface of the Weyl semimetal TaAs. Our measurements reveal 10 different scattering wave vectors, which can be understood and precisely reproduced with a theory that takes into account the shape, spin texture, and momentum-dependent propagation of the Fermi arc surface states into the bulk. Our findings provide evidence that Weyl nodes act as sinks for electron transport on the surface of these materials.


Nature Communications | 2016

Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe2

Pranab Kumar Das; Domenico Di Sante; I. Vobornik; J. Fujii; Taichi Okuda; Emilie Bruyer; Andras Gyenis; Benjamin E. Feldman; Jing Tao; Regina Ciancio; G. Rossi; Mazhar N. Ali; Silvia Picozzi; A. Yadzani; G. Panaccione; R. J. Cava

The behaviour of electrons and holes in a crystal lattice is a fundamental quantum phenomenon, accounting for a rich variety of material properties. Boosted by the remarkable electronic and physical properties of two-dimensional materials such as graphene and topological insulators, transition metal dichalcogenides have recently received renewed attention. In this context, the anomalous bulk properties of semimetallic WTe2 have attracted considerable interest. Here we report angle- and spin-resolved photoemission spectroscopy of WTe2 single crystals, through which we disentangle the role of W and Te atoms in the formation of the band structure and identify the interplay of charge, spin and orbital degrees of freedom. Supported by first-principles calculations and high-resolution surface topography, we reveal the existence of a layer-dependent behaviour. The balance of electron and hole states is found only when considering at least three Te–W–Te layers, showing that the behaviour of WTe2 is not strictly two dimensional.


Review of Scientific Instruments | 2013

Design and performance of an ultra-high vacuum scanning tunneling microscope operating at dilution refrigerator temperatures and high magnetic fields

Shashank Misra; Brian B. Zhou; Ilya Drozdov; Jungpil Seo; Lukas Urban; Andras Gyenis; Simon C. J. Kingsley; Howard Jones; Ali Yazdani

We describe the construction and performance of a scanning tunneling microscope capable of taking maps of the tunneling density of states with sub-atomic spatial resolution at dilution refrigerator temperatures and high (14 T) magnetic fields. The fully ultra-high vacuum system features visual access to a two-sample microscope stage at the end of a bottom-loading dilution refrigerator, which facilitates the transfer of in situ prepared tips and samples. The two-sample stage enables location of the best area of the sample under study and extends the experiment lifetime. The successful thermal anchoring of the microscope, described in detail, is confirmed through a base temperature reading of 20 mK, along with a measured electron temperature of 250 mK. Atomically resolved images, along with complementary vibration measurements, are presented to confirm the effectiveness of the vibration isolation scheme in this instrument. Finally, we demonstrate that the microscope is capable of the same level of performance as typical machines with more modest refrigeration by measuring spectroscopic maps at base temperature both at zero field and in an applied magnetic field.


Nature Communications | 2016

Sn-doped Bi1.1Sb0.9Te2S bulk crystal topological insulator with excellent properties

Satya Kushwaha; I. Pletikosić; Tian Liang; Andras Gyenis; S. H. Lapidus; Yao Tian; He Zhao; Kenneth S. Burch; Jingjing Lin; Wudi Wang; H. Ji; A. V. Fedorov; Ali Yazdani; N. P. Ong; T. Valla; R. J. Cava

A long-standing issue in topological insulator research has been to find a bulk single crystal material that provides a high-quality platform for characterizing topological surface states without interference from bulk electronic states. This material would ideally be a bulk insulator, have a surface state Dirac point energy well isolated from the bulk valence and conduction bands, display quantum oscillations from the surface state electrons and be growable as large, high-quality bulk single crystals. Here we show that this material obstacle is overcome by bulk crystals of lightly Sn-doped Bi1.1Sb0.9Te2S grown by the vertical Bridgman method. We characterize Sn-BSTS via angle-resolved photoemission spectroscopy, scanning tunnelling microscopy, transport studies, X-ray diffraction and Raman scattering. We present this material as a high-quality topological insulator that can be reliably grown as bulk single crystals and thus studied by many researchers interested in topological surface states.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Polytypism, polymorphism, and superconductivity in TaSe2−xTex

Huixia Luo; Weiwei Xie; Jing Tao; Hiroyuki Inoue; Andras Gyenis; Jason W. Krizan; Ali Yazdani; Yimei Zhu; R. J. Cava

Significance Although polymorphs of a substance can often have dramatically different physical properties, polytypes, which occur when the geometry of a structural layer is maintained but the number of layers in the layer-stacking sequence is changed, rarely do. Here we find, using random substitution of Te for some of the Se to induce structural changes in TaSe2, a classic layered dichalcogenide, so that the transition temperature to superconductivity (Tc) is significantly different for different polytypes and polymorphs and especially differs when going from one polytype to another. This observation implies either a surprising sensitivity of Tc to the layer-stacking sequence or a similarly surprising sensitivity of Tc to the small changes in layer geometry that accompany the change in polytype. Polymorphism in materials often leads to significantly different physical properties—the rutile and anatase polymorphs of TiO2 are a prime example. Polytypism is a special type of polymorphism, occurring in layered materials when the geometry of a repeating structural layer is maintained but the layer-stacking sequence of the overall crystal structure can be varied; SiC is an example of a material with many polytypes. Although polymorphs can have radically different physical properties, it is much rarer for polytypism to impact physical properties in a dramatic fashion. Here we study the effects of polytypism and polymorphism on the superconductivity of TaSe2, one of the archetypal members of the large family of layered dichalcogenides. We show that it is possible to access two stable polytypes and two stable polymorphs in the TaSe2−xTex solid solution and find that the 3R polytype shows a superconducting transition temperature that is between 6 and 17 times higher than that of the much more commonly found 2H polytype. The reason for this dramatic change is not apparent, but we propose that it arises either from a remarkable dependence of Tc on subtle differences in the characteristics of the single layers present or from a surprising effect of the layer-stacking sequence on electronic properties that are typically expected to be dominated by the properties of a single layer in materials of this kind.


APL Materials | 2015

Bulk crystal growth and electronic characterization of the 3D Dirac semimetal Na3Bi

Satya Kushwaha; Jason W. Krizan; Benjamin E. Feldman; Andras Gyenis; Mallika T. Randeria; Jun Xiong; Su-Yang Xu; Nasser Alidoust; Ilya Belopolski; Tian Liang; M. Zahid Hasan; N. P. Ong; Ali Yazdani; R. J. Cava

High quality hexagon plate-like Na3Bi crystals with large (001) plane surfaces were grown from a molten Na flux. The freshly cleaved crystals were analyzed by low temperature scanning tunneling microscopy and angle-resolved photoemission spectroscopy, allowing for the characterization of the three-dimensional (3D) Dirac semimetal (TDS) behavior and the observation of the topological surface states. Landau levels were observed, and the energy-momentum relations exhibited a linear dispersion relationship, characteristic of the 3D TDS nature of Na3Bi. In transport measurements on Na3Bi crystals, the linear magnetoresistance and Shubnikov-de Haas quantum oscillations are observed for the first time.


New Journal of Physics | 2016

Imaging electronic states on topological semimetals using scanning tunneling microscopy

Andras Gyenis; Hiroyuki Inoue; Sangjun Jeon; Brian B. Zhou; Benjamin E. Feldman; Zhijun Wang; Jian Li; Shan Jiang; Quinn Gibson; Satya Kushwaha; Jason W. Krizan; Ni Ni; R. J. Cava; B. Andrei Bernevig; Ali Yazdani

Following the intense studies on topological insulators, significant efforts have recently been devoted to the search for gapless topological systems. These materials not only broaden the topological classification of matter but also provide a condensed matter realization of various relativistic particles and phenomena previously discussed mainly in high energy physics. Weyl semimetals host massless, chiral, low-energy excitations in the bulk electronic band structure, whereas a symmetry protected pair of Weyl fermions gives rise to massless Dirac fermions. We employed scanning tunneling microscopy/spectroscopy to explore the behavior of electronic states both on the surface and in the bulk of topological semimetal phases. By mapping the quasiparticle interference (QPI) and emerging Landau levels at high magnetic field in Dirac semimetals Cd3As2 and Na3Bi, we observed extended Dirac-like bulk electronic bands. QPI imaged on Weyl semimetal TaAs demonstrated the predicted momentum dependent delocalization of Fermi arc surface states in the vicinity of the surface-projected Weyl nodes.


Science Advances | 2016

Quasi-particle interference of heavy fermions in resonant x-ray scattering

Andras Gyenis; Eduardo H. da Silva Neto; Ronny Sutarto; E. Schierle; F. He; E. Weschke; Mariam Kavai; R. E. Baumbach; Joe D. Thompson; Eric D. Bauer; Z. Fisk; A. Damascelli; Ali Yazdani; Pegor Aynajian

Probing the quasi-particle interference of heavy fermions by resonant x-ray scattering and scanning tunneling spectroscopy. Resonant x-ray scattering (RXS) has recently become an increasingly important tool for the study of ordering phenomena in correlated electron systems. Yet, the interpretation of RXS experiments remains theoretically challenging because of the complexity of the RXS cross section. Central to this debate is the recent proposal that impurity-induced Friedel oscillations, akin to quasi-particle interference signals observed with a scanning tunneling microscope (STM), can lead to scattering peaks in RXS experiments. The possibility that quasi-particle properties can be probed in RXS measurements opens up a new avenue to study the bulk band structure of materials with the orbital and element selectivity provided by RXS. We test these ideas by combining RXS and STM measurements of the heavy fermion compound CeMIn5 (M = Co, Rh). Temperature- and doping-dependent RXS measurements at the Ce-M4 edge show a broad scattering enhancement that correlates with the appearance of heavy f-electron bands in these compounds. The scattering enhancement is consistent with the measured quasi-particle interference signal in the STM measurements, indicating that the quasi-particle interference can be probed through the momentum distribution of RXS signals. Overall, our experiments demonstrate new opportunities for studies of correlated electronic systems using the RXS technique.

Collaboration


Dive into the Andras Gyenis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric D. Bauer

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

H. Ji

Princeton University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. H. MacDonald

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge