András Zlinszky
Hungarian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by András Zlinszky.
Remote Sensing | 2012
András Zlinszky; Werner Mücke; Hubert Lehner; Christian Briese; Norbert Pfeifer
Outlining patches dominated by different plants in wetland vegetation provides information on species succession, microhabitat patterns, wetland health and ecosystem services. Aerial photogrammetry and hyperspectral imaging are the usual data acquisition methods but the application of airborne laser scanning (ALS) as a standalone tool also holds promises for this field since it can be used to quantify 3-dimensional vegetation structure. Lake Balaton is a large shallow lake in western Hungary with shore wetlands that have been in decline since the 1970s. In August 2010, an ALS survey of the shores of Lake Balaton was completed with 1 pt/m2 discrete echo recording. The resulting ALS dataset was processed to several output rasters describing vegetation and terrain properties, creating a sufficient number of independent variables for each raster cell to allow for basic multivariate classification. An expert-generated decision tree algorithm was applied to outline wetland areas, and within these, patches dominated by Typha sp. Carex sp., and Phragmites australis. Reed health was mapped into four categories: healthy, stressed, ruderal and die-back. The output map was tested against a set of 775 geo-tagged ground photographs and had a user’s accuracy of > 97% for detecting non-wetland features (trees, artificial surfaces and low density Scirpus stands), > 72% for dominant genus detection and > 80% for most reed health categories (with 62% for one category). Overall classification accuracy was 82.5%, Cohen’s Kappa 0.80, which is similar to some hyperspectral or multispectral-ALS fusion studies. Compared to hyperspectral imaging, the processing chain of ALS can be automated in a similar way but relies directly on differences in vegetation structure and actively sensed reflectance and is thus probably more robust. The data acquisition parameters are similar to the national surveys of several European countries, suggesting that these existing datasets could be used for vegetation mapping and monitoring.
Remote Sensing | 2014
András Zlinszky; Anke Schroiff; Adam Kania; Balázs Deák; Werner Mücke; Ágnes Vári; Balázs Székely; Norbert Pfeifer
There is increasing demand for reliable, high-resolution vegetation maps covering large areas. Airborne laser scanning data is available for large areas with high resolution and supports automatic processing, therefore, it is well suited for habitat mapping. Lowland hay meadows are widespread habitat types in European grasslands, and also have one of the highest species richness. The objective of this study was to test the applicability of airborne laser scanning for vegetation mapping of different grasslands, including the Natura 2000 habitat type lowland hay meadows. Full waveform leaf-on and leaf-off point clouds were collected from a Natura 2000 site in Sopron, Hungary, covering several grasslands. The LIDAR data were processed to a set of rasters representing point attributes including reflectance, echo width, vegetation height, canopy openness, and surface roughness measures, and these were fused to a multi-band pseudo-image. Random forest machine learning was used for classifying this dataset. Habitat type, dominant plant species and other features of interest were noted in a set of 140 field plots. Two sets of categories were used: five classes focusing on meadow identification and the location of lowland hay meadows, and 10 classes, including eight different grassland vegetation categories. For five classes, an overall accuracy of 75% was reached, for 10 classes, this was 68%. The method delivers unprecedented fine resolution vegetation maps for management and ecological research. We conclude that high-resolution full-waveform LIDAR data can be used to detect grassland vegetation classes relevant for Natura 2000.
Nature Ecology and Evolution | 2017
Alex Bush; Rahel Sollmann; Andreas Wilting; Kristine Bohmann; Beth Cole; Heiko Balzter; Christopher Martius; András Zlinszky; Sébastien Calvignac-Spencer; Christina A. Cobbold; Terence P. Dawson; Brent C. Emerson; Simon Ferrier; M. Thomas P. Gilbert; Martin Herold; Laurence Jones; Fabian H. Leendertz; Louise Matthews; James D. A. Millington; John R. Olson; Otso Ovaskainen; Dave Raffaelli; Richard Reeve; Mark Oliver Rödel; Torrey W. Rodgers; Stewart Snape; Ingrid J. Visseren-Hamakers; Alfried P. Vogler; Piran C. L. White; Martin J. Wooster
Understandably, given the fast pace of biodiversity loss, there is much interest in using Earth observation technology to track biodiversity, ecosystem functions and ecosystem services. However, because most biodiversity is invisible to Earth observation, indicators based on Earth observation could be misleading and reduce the effectiveness of nature conservation and even unintentionally decrease conservation effort. We describe an approach that combines automated recording devices, high-throughput DNA sequencing and modern ecological modelling to extract much more of the information available in Earth observation data. This approach is achievable now, offering efficient and near-real-time monitoring of management impacts on biodiversity and its functions and services.
Remote Sensing | 2015
András Zlinszky; Balázs Deák; Adam Kania; Anke Schroiff; Norbert Pfeifer
Natura 2000 Habitat Conservation Status is currently evaluated based on fieldwork. However, this is proving to be unfeasible over large areas. The use of remote sensing is increasingly encouraged but covering the full range of ecological variables by such datasets and ensuring compatibility with the traditional assessment methodology has not been achieved yet. We aimed to test Airborne Laser Scanning (ALS) as a source for mapping all variables required by the local official conservation status assessment scheme and to develop an automated method that calculates Natura 2000 conservation status at 0.5 m raster resolution for 24 km2 of Pannonic Salt Steppe habitat (code 1530). We used multi-temporal (summer and winter) ALS point clouds with full-waveform recording and a density of 10 pt/m2. Some required variables were derived from ALS product rasters; others involved vegetation classification layers calculated by machine learning and fuzzy categorization. Thresholds separating favorable and unfavorable values of each variable required by the national assessment scheme were manually calibrated from 10 plots where field-based assessment was carried out. Rasters representing positive and negative scores for each input variable were integrated in a ruleset that exactly follows the Hungarian Natura 2000 assessment scheme for grasslands. Accuracy of each parameter and the final conservation status score and category was evaluated by 10 independent assessment plots. We conclude that ALS is a suitable data source for Natura 2000 assessments in grasslands, and that the national grassland assessment scheme can successfully be used as a GIS processing model for conservation status, ensuring that the output is directly comparable with traditional field based assessments.
Sensors | 2015
Dimitris Stratoulias; Heiko Balzter; Olga Sykioti; András Zlinszky; Viktor R. Tóth
Monitoring of lakeshore ecosystems requires fine-scale information to account for the high biodiversity typically encountered in the land-water ecotone. Sentinel-2 is a satellite with high spatial and spectral resolution and improved revisiting frequency and is expected to have significant potential for habitat mapping and classification of complex lakeshore ecosystems. In this context, investigations of the capabilities of Sentinel-2 in regard to the spatial and spectral dimensions are needed to assess its potential and the quality of the expected output. This study presents the first simulation of the high spatial resolution (i.e., 10 m and 20 m) bands of Sentinel-2 for lakeshore mapping, based on the satellite’s Spectral Response Function and hyperspectral airborne data collected over Lake Balaton, Hungary in August 2010. A comparison of supervised classifications of the simulated products is presented and the information loss from spectral aggregation and spatial upscaling in the context of lakeshore vegetation classification is discussed. We conclude that Sentinel-2 imagery has a strong potential for monitoring fine-scale habitats, such as reed beds.
Remote Sensing | 2013
Stephanie C. J. Palmer; Vadim Pelevin; Igor V. Goncharenko; Attila Kovács; András Zlinszky; Mátyás Présing; Hajnalka Horváth; Virginia Nicolás-Perea; Heiko Balzter; Viktor R. Tóth
Despite longstanding contributions to oceanography, similar use of fluorescence light detection and ranging (LiDAR) in lake settings is not routine. The potential for ship-mounted, multispectral Ultraviolet Fluorescence LiDAR (UFL) to provide rapid, high-resolution data in variably turbid and productive lake conditions are investigated here through a series of laboratory tank and field measurements carried out on Lake Balaton, Hungary. UFL data, calibrated empirically to a set of coinciding conventionally-analyzed samples, provide simultaneous estimates of three important parameters-chlorophyll a(chla), total suspended matter (TSM) and colored dissolved organic matter (CDOM). Successful UFL retrievals from both laboratory and field measurements were achieved for chla (0.01–378 mg∙m−3; R = 0.83–0.92), TSM (0.1–130 g∙m−3; R = 0.90–0.96) and CDOM (0.003–0.125 aCDOM(440); R = 0.80–0.97). Fluorescence emission at 685 nm is shown through tank measurements to display robust but distinct relationships with chla concentration for the two cultured algae species investigated (cyanobacteria, Cylindrospermopsis raciborskii, and chlorophyta, Scenedesmus armatus). The ratio between fluorescence emissions measured at 650 nm, related to the phycocyanin fluorescence maximum, to that at 685 nm is demonstrated to effectively distinguish these two species. Validation through both laboratory measurements and field measurements confirmed that site specific calibration is necessary. This study presents the first known assessment and application of ship-mounted fluorescence LiDAR in freshwater lake conditions and demonstrates the use of UFL in measuring important water quality parameters despite the more complicated hydro-optic conditions of inland waters.
Frontiers in Plant Science | 2016
Eetu Puttonen; Christian Briese; Gottfried Mandlburger; Martin Wieser; Martin Pfennigbauer; András Zlinszky; Norbert Pfeifer
The goal of the study was to determine circadian movements of silver birch (Petula Bendula) branches and foliage detected with terrestrial laser scanning (TLS). The study consisted of two geographically separate experiments conducted in Finland and in Austria. Both experiments were carried out at the same time of the year and under similar outdoor conditions. Experiments consisted of 14 (Finland) and 77 (Austria) individual laser scans taken between sunset and sunrise. The resulting point clouds were used in creating a time series of branch movements. In the Finnish data, the vertical movement of the whole tree crown was monitored due to low volumetric point density. In the Austrian data, movements of manually selected representative points on branches were monitored. The movements were monitored from dusk until morning hours in order to avoid daytime wind effects. The results indicated that height deciles of the Finnish birch crown had vertical movements between -10.0 and 5.0 cm compared to the situation at sunset. In the Austrian data, the maximum detected representative point movement was 10.0 cm. The temporal development of the movements followed a highly similar pattern in both experiments, with the maximum movements occurring about an hour and a half before (Austria) or around (Finland) sunrise. The results demonstrate the potential of terrestrial laser scanning measurements in support of chronobiology.
Remote Sensing | 2015
András Zlinszky; Hermann Heilmeier; Heiko Balzter; Bálint Czúcz; Norbert Pfeifer
Habitat quality is the ability of the environment to provide conditions appropriate for individual and species persistence. Measuring or monitoring habitat quality requires complex integration of many properties of the ecosystem, where traditional terrestrial data collection methods have proven extremely time-demanding. Remote sensing has known potential to map various ecosystem properties, also allowing rigorous checking of accuracy and supporting standardized processing. Our Special Issue presents examples where remote sensing has been successfully used for habitat mapping, quantification of habitat quality parameters, or multi-parameter modelling of habitat quality itself. New frontiers such as bathymetric scanning, grassland vegetation classification and operational use were explored, various new ecological verification methods were introduced and integration with ongoing habitat conservation schemes was demonstrated. These studies show that remote sensing and Geoinformation Science for habitat quality analysis have evolved from isolated experimental studies to an active field of research with a dedicated community. It is expected that these new methods will substantially contribute to biodiversity conservation worldwide.
International Journal of Remote Sensing | 2017
Vadim Pelevin; András Zlinszky; Elizaveta Khimchenko; Viktor R. Tóth
ABSTRACT This article is based on field measurements on the lake Balaton (Hungary) during the three days: 10, 11, and 12 September 2008. The expedition was performed with the aim to test recently developed ultraviolet (UV) fluorescent portable lidar UFL-8 in natural lake waters and to validate it by contact conventional measurements. We had opportunity to compare our results with the Moderate Resolution Imaging Spectroradiometer (MODIS)/Terra spectroradiometer satellite images received at the satellite monitoring station of the Eötvös Loránd University (Budapest, Hungary) to make an attempt of lidar calibration of satellite medium-resolution bands data. Water quality parameters were surveyed with the help of UFL lidar in a time interval very close to the satellite overpass. High resolution maps of the chlorophyll-a, chromophoric dissolved organic matter and total suspended sediments spatial distributions were obtained.
Frontiers in Plant Science | 2017
András Zlinszky; Bence Molnár; Anders S. Barfod
Circadian leaf movements are widely known in plants, but nocturnal movement of tree branches were only recently discovered by using terrestrial laser scanning (TLS), a high resolution three-dimensional surveying technique. TLS uses a pulsed laser emitted in a regular scan pattern for rapid measurement of distances to the targets, thus producing three dimensional point cloud models of sub-centimeter resolution and accuracy in a few minutes. Here, we aim to gain an overview of the variability of circadian movement of small trees across different taxonomic groups, growth forms and leaf anatomies. We surveyed a series of 18 full scans over a 12-h night period to measure nocturnal changes in shape simultaneously for an experimental setup of 22 plants representing different species. Resulting point clouds were evaluated by comparing changes in height percentiles of laser scanning points belonging to the canopy. Changes in crown shape were observed for all studied trees, but clearly distinguishable sleep movements are apparently rare. Ambient light conditions were continuously dark between sunset (7:30 p.m.) and sunrise (6:00 a.m.), but most changes in movement direction occurred during this period, thus most of the recorded changes in crown shape were probably not controlled by ambient light. The highest movement amplitudes, for periodic circadian movement around 2 cm were observed for Aesculus and Acer, compared to non-periodic continuous change in shape of 5 cm for Gleditschia and 2 cm for Fargesia. In several species we detected 2–4 h cycles of minor crown movement of 0.5–1 cm, which is close to the limit of our measurement accuracy. We present a conceptual framework for interpreting observed changes as a combination of circadian rhythm with a period close to 12 h, short-term oscillation repeated every 2–4 h, aperiodic continuous movement in one direction and measurement noise which we assume to be random. Observed movement patterns are interpreted within this framework, and connections with morphology and taxonomy are proposed. We confirm the existence of overnight “sleep” movement for some trees, but conclude that circadian movement is a variable phenomenon in plants, probably controlled by a complex combination of anatomical, physiological, and morphological factors.