Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andraž Stožer is active.

Publication


Featured researches published by Andraž Stožer.


Nature Medicine | 2015

Characterization of pancreatic NMDA receptors as possible drug targets for diabetes treatment

Jan Marquard; Silke Otter; Alena Welters; Alin Stirban; Annelie Fischer; Jan Eglinger; Diran Herebian; Olaf Kletke; Maša Skelin Klemen; Andraž Stožer; Stephan Wnendt; Lorenzo Piemonti; Martin Köhler; Jorge Ferrer; Bernard Thorens; Freimut Schliess; Marjan Slak Rupnik; Tim Heise; Per-Olof Berggren; Nikolaj Klöcker; Thomas Meissner; Ertan Mayatepek; Daniel Eberhard; Martin Kragl; Eckhard Lammert

In the nervous system, NMDA receptors (NMDARs) participate in neurotransmission and modulate the viability of neurons. In contrast, little is known about the role of NMDARs in pancreatic islets and the insulin-secreting beta cells whose functional impairment contributes to diabetes mellitus. Here we found that inhibition of NMDARs in mouse and human islets enhanced their glucose-stimulated insulin secretion (GSIS) and survival of islet cells. Further, NMDAR inhibition prolonged the amount of time that glucose-stimulated beta cells spent in a depolarized state with high cytosolic Ca2+ concentrations. We also noticed that, in vivo, the NMDAR antagonist dextromethorphan (DXM) enhanced glucose tolerance in mice, and that in vitro dextrorphan, the main metabolite of DXM, amplified the stimulatory effect of exendin-4 on GSIS. In a mouse model of type 2 diabetes mellitus (T2DM), long-term treatment with DXM improved islet insulin content, islet cell mass and blood glucose control. Further, in a small clinical trial we found that individuals with T2DM treated with DXM showed enhanced serum insulin concentrations and glucose tolerance. Our data highlight the possibility that antagonists of NMDARs may provide a useful adjunct treatment for diabetes.


PLOS Computational Biology | 2013

Functional connectivity in islets of Langerhans from mouse pancreas tissue slices

Andraž Stožer; Marko Gosak; Jurij Dolenšek; Matjaž Perc; Marko Marhl; Marjan Slak Rupnik; Dean Korošak

We propose a network representation of electrically coupled beta cells in islets of Langerhans. Beta cells are functionally connected on the basis of correlations between calcium dynamics of individual cells, obtained by means of confocal laser-scanning calcium imaging in islets from acute mouse pancreas tissue slices. Obtained functional networks are analyzed in the light of known structural and physiological properties of islets. Focusing on the temporal evolution of the network under stimulation with glucose, we show that the dynamics are more correlated under stimulation than under non-stimulated conditions and that the highest overall correlation, largely independent of Euclidean distances between cells, is observed in the activation and deactivation phases when cells are driven by the external stimulus. Moreover, we find that the range of interactions in networks during activity shows a clear dependence on the Euclidean distance, lending support to previous observations that beta cells are synchronized via calcium waves spreading throughout islets. Most interestingly, the functional connectivity patterns between beta cells exhibit small-world properties, suggesting that beta cells do not form a homogeneous geometric network but are connected in a functionally more efficient way. Presented results provide support for the existing knowledge of beta cell physiology from a network perspective and shed important new light on the functional organization of beta cell syncitia whose structural topology is probably not as trivial as believed so far.


Islets | 2015

Structural similarities and differences between the human and the mouse pancreas

Jurij Dolenšek; Marjan Slak Rupnik; Andraž Stožer

Mice remain the most studied animal model in pancreas research. Since the findings of this research are typically extrapolated to humans, it is important to understand both similarities and differences between the 2 species. Beside the apparent difference in size and macroscopic organization of the organ in the 2 species, there are a number of less evident and only recently described differences in organization of the acinar and ductal exocrine tissue, as well as in the distribution, composition, and architecture of the endocrine islets of Langerhans. Furthermore, the differences in arterial, venous, and lymphatic vessels, as well as innervation are potentially important. In this article, the structure of the human and the mouse pancreas, together with the similarities and differences between them are reviewed in detail in the light of conceivable repercussions for basic research and clinical application.


PLOS ONE | 2013

Glucose-Stimulated Calcium Dynamics in Islets of Langerhans in Acute Mouse Pancreas Tissue Slices

Andraž Stožer; Jurij Dolenšek; Marjan Slak Rupnik

In endocrine cells within islets of Langerhans calcium ions couple cell stimulation to hormone secretion. Since the advent of modern fluorimetry, numerous in vitro studies employing primarily isolated mouse islets have investigated the effects of various secretagogues on cytoplasmic calcium, predominantly in insulin-secreting beta cells. Due to technical limitations, insights of these studies are inherently limited to a rather small subpopulation of outermost cells. The results also seem to depend on various factors, like culture conditions and duration, and are not always easily reconcilable with findings in vivo. The main controversies regard the types of calcium oscillations, presence of calcium waves, and the level of synchronized activity. Here, we set out to combine the in situ acute mouse pancreas tissue slice preparation with noninvasive fluorescent calcium labeling and subsequent confocal laser scanning microscopy to shed new light on the existing controversies utilizing an innovative approach enabling the characterization of responses in many cells from all layers of islets. Our experiments reproducibly showed stable fast calcium oscillations on a sustained plateau rather than slow oscillations as the predominant type of response in acute tissue slices, and that calcium waves are the mechanistic substrate for synchronization of oscillations. We also found indirect evidence that even a large amplitude calcium signal was not sufficient and that metabolic activation was necessary to ensure cell synchronization upon stimulation with glucose. Our novel method helped resolve existing controversies and showed the potential to help answer important physiological questions, making it one of the methods of choice for the foreseeable future.


PLOS ONE | 2013

The Relationship between Membrane Potential and Calcium Dynamics in Glucose-Stimulated Beta Cell Syncytium in Acute Mouse Pancreas Tissue Slices

Jurij Dolenšek; Andraž Stožer; Maša Skelin Klemen; Evan W. Miller; Marjan Slak Rupnik

Oscillatory electrical activity is regarded as a hallmark of the pancreatic beta cell glucose-dependent excitability pattern. Electrophysiologically recorded membrane potential oscillations in beta cells are associated with in-phase oscillatory cytosolic calcium activity ([Ca2+]i) measured with fluorescent probes. Recent high spatial and temporal resolution confocal imaging revealed that glucose stimulation of beta cells in intact islets within acute tissue slices produces a [Ca2+]i change with initial transient phase followed by a plateau phase with highly synchronized [Ca2+]i oscillations. Here, we aimed to correlate the plateau [Ca2+]i oscillations with the oscillations of membrane potential using patch-clamp and for the first time high resolution voltage-sensitive dye based confocal imaging. Our results demonstrated that the glucose-evoked membrane potential oscillations spread over the islet in a wave-like manner, their durations and wave velocities being comparable to the ones for [Ca2+]i oscillations and waves. High temporal resolution simultaneous records of membrane potential and [Ca2+]i confirmed tight but nevertheless limited coupling of the two processes, with membrane depolarization preceding the [Ca2+]i increase. The potassium channel blocker tetraethylammonium increased the velocity at which oscillations advanced over the islet by several-fold while, at the same time, emphasized differences in kinetics of the membrane potential and the [Ca2+]i. The combination of both imaging techniques provides a powerful tool that will help us attain deeper knowledge of the beta cell network.


Physics of Life Reviews | 2017

Network science of biological systems at different scales: A review

Marko Gosak; Rene Markovič; Jurij Dolenšek; Marjan Slak Rupnik; Marko Marhl; Andraž Stožer; Matjaž Perc

Network science is today established as a backbone for description of structure and function of various physical, chemical, biological, technological, and social systems. Here we review recent advances in the study of complex biological systems that were inspired and enabled by methods of network science. First, we present research highlights ranging from determination of the molecular interaction network within a cell to studies of architectural and functional properties of brain networks and biological transportation networks. Second, we focus on synergies between network science and data analysis, which enable us to determine functional connectivity patterns in multicellular systems. Until now, this intermediate scale of biological organization received the least attention from the network perspective. As an example, we review the methodology for the extraction of functional beta cell networks in pancreatic islets of Langerhans by means of advanced imaging techniques. Third, we concentrate on the emerging field of multilayer networks and review the first endeavors and novel perspectives offered by this framework in exploring biological complexity. We conclude by outlining challenges and directions for future research that encompass utilization of the multilayer network formalism in exploring intercellular communication patterns in tissues, and we advocate for network science being one of the key pillars for assessing physiological function of complex biological systems-from organelles to organs-in health and disease.


Scientific Reports | 2015

Progressive glucose stimulation of islet beta cells reveals a transition from segregated to integrated modular functional connectivity patterns

Rene Markovič; Andraž Stožer; Marko Gosak; Jurij Dolenšek; Marko Marhl; Marjan Slak Rupnik

Collective beta cell activity in islets of Langerhans is critical for the supply of insulin within an organism. Even though individual beta cells are intrinsically heterogeneous, the presence of intercellular coupling mechanisms ensures coordinated activity and a well-regulated exocytosis of insulin. In order to get a detailed insight into the functional organization of the syncytium, we applied advanced analytical tools from the realm of complex network theory to uncover the functional connectivity pattern among cells composing the intact islet. The procedure is based on the determination of correlations between long temporal traces obtained from confocal functional multicellular calcium imaging of beta cells stimulated in a stepwise manner with a range of physiological glucose concentrations. Our results revealed that the extracted connectivity networks are sparse for low glucose concentrations, whereas for higher stimulatory levels they become more densely connected. Most importantly, for all ranges of glucose concentration beta cells within the islets form locally clustered functional sub-compartments, thereby indicating that their collective activity profiles exhibit a modular nature. Moreover, we show that the observed non-linear functional relationship between different network metrics and glucose concentration represents a well-balanced setup that parallels physiological insulin release.


Chaos | 2015

The relationship between node degree and dissipation rate in networks of diffusively coupled oscillators and its significance for pancreatic beta cells.

Marko Gosak; Andraž Stožer; Rene Markovič; Jurij Dolenšek; Marko Marhl; Marjan Slak Rupnik; Matjaž Perc

Self-sustained oscillatory dynamics is a motion along a stable limit cycle in the phase space, and it arises in a wide variety of mechanical, electrical, and biological systems. Typically, oscillations are due to a balance between energy dissipation and generation. Their stability depends on the properties of the attractor, in particular, its dissipative characteristics, which in turn determine the flexibility of a given dynamical system. In a network of oscillators, the coupling additionally contributes to the dissipation, and hence affects the robustness of the oscillatory solution. Here, we therefore investigate how a heterogeneous network structure affects the dissipation rate of individual oscillators. First, we show that in a network of diffusively coupled oscillators, the dissipation is a linearly decreasing function of the node degree, and we demonstrate this numerically by calculating the average divergence of coupled Hopf oscillators. Subsequently, we use recordings of intracellular calcium dynamics in pancreatic beta cells in mouse acute tissue slices and the corresponding functional connectivity networks for an experimental verification of the presented theory. We use methods of nonlinear time series analysis to reconstruct the phase space and calculate the sum of Lyapunov exponents. Our analysis reveals a clear tendency of cells with a higher degree, that is, more interconnected cells, having more negative values of divergence, thus confirming our theoretical predictions. We discuss these findings in the context of energetic aspects of signaling in beta cells and potential risks for pathological changes in the tissue.


Islets | 2017

The triggering pathway to insulin secretion: Functional similarities and differences between the human and the mouse β cells and their translational relevance

Maša Skelin Klemen; Jurij Dolenšek; Marjan Slak Rupnik; Andraž Stožer

ABSTRACT In β cells, stimulation by metabolic, hormonal, neuronal, and pharmacological factors is coupled to secretion of insulin through different intracellular signaling pathways. Our knowledge about the molecular machinery supporting these pathways and the patterns of signals it generates comes mostly from rodent models, especially the laboratory mouse. The increased availability of human islets for research during the last few decades has yielded new insights into the specifics in signaling pathways leading to insulin secretion in humans. In this review, we follow the most central triggering pathway to insulin secretion from its very beginning when glucose enters the β cell to the calcium oscillations it produces to trigger fusion of insulin containing granules with the plasma membrane. Along the way, we describe the crucial building blocks that contribute to the flow of information and focus on their functional role in mice and humans and on their translational implications.


Diabetes Research and Clinical Practice | 2016

Validation of the Finnish Diabetes Risk Score (FINDRISC) questionnaire for undiagnosed type 2 diabetes screening in the Slovenian working population

Gregor Stiglic; Nino Fijačko; Andraž Stožer; Aziz Sheikh; Majda Pajnkihar

We performed a cross-sectional population-based study on 632 participants, aged 20-65, who were screened using the Finnish Diabetes Risk Score (FINDRISC) questionnaire. Optimal results for men were achieved at FINDRISC⩾7 (100.0% sensitivity and 0.78 AUC) and for women at FINDRISC⩾13 (60.0% sensitivity and 0.78 AUC).

Collaboration


Dive into the Andraž Stožer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge