Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where André Anjos is active.

Publication


Featured researches published by André Anjos.


International Journal of Central Banking | 2011

Counter-measures to photo attacks in face recognition: A public database and a baseline

André Anjos; Sébastien Marcel

A common technique to by-pass 2-D face recognition systems is to use photographs of spoofed identities. Unfortunately, research in counter-measures to this type of attack have not kept-up - even if such threats have been known for nearly a decade, there seems to exist no consensus on best practices, techniques or protocols for developing and testing spoofing-detectors for face recognition. We attribute the reason for this delay, partly, to the unavailability of public databases and protocols to study solutions and compare results. To this purpose we introduce the publicly available PRINT-ATTACK database and exemplify how to use its companion protocol with a motion-based algorithm that detects correlations between the persons head movements and the scene context. The results are to be used as basis for comparison to other counter-measure techniques. The PRINT-ATTACK database contains 200 videos of real-accesses and 200 videos of spoof attempts using printed photographs of 50 different identities.


acm multimedia | 2012

Bob: a free signal processing and machine learning toolbox for researchers

André Anjos; Laurent El-Shafey; Roy Wallace; Manuel Günther; Chris McCool; Sébastien Marcel

Bob is a free signal processing and machine learning toolbox originally developed by the Biometrics group at Idiap Research Institute, Switzerland. The toolbox is designed to meet the needs of researchers by reducing development time and efficiently processing data. Firstly, Bob provides a researcher-friendly Python environment for rapid development. Secondly, efficient processing of large amounts of multimedia data is provided by fast C++ implementations of identified bottlenecks. The Python environment is integrated seamlessly with the C++ library, which ensures the library is easy to use and extensible. Thirdly, Bob supports reproducible research through its integrated experimental protocols for several databases. Finally, a strong emphasis is placed on code clarity, documentation, and thorough unit testing. Bob is thus an attractive resource for researchers due to this unique combination of ease of use, efficiency, extensibility and transparency. Bob is an open-source library and an ongoing community effort.


International Journal of Central Banking | 2011

Competition on counter measures to 2-D facial spoofing attacks

Murali Mohan Chakka; André Anjos; Sébastien Marcel; Roberto Tronci; Daniele Muntoni; Gianluca Fadda; Maurizio Pili; Nicola Sirena; Gabriele Murgia; Marco Ristori; Fabio Roli; Junjie Yan; Dong Yi; Zhen Lei; Zhiwei Zhang; Stan Z. Li; William Robson Schwartz; Anderson Rocha; Helio Pedrini; Javier Lorenzo-Navarro; Modesto Castrillón-Santana; Jukka Määttä; Abdenour Hadid; Matti Pietikäinen

Spoofing identities using photographs is one of the most common techniques to attack 2-D face recognition systems. There seems to exist no comparative studies of different techniques using the same protocols and data. The motivation behind this competition is to compare the performance of different state-of-the-art algorithms on the same database using a unique evaluation method. Six different teams from universities around the world have participated in the contest. Use of one or multiple techniques from motion, texture analysis and liveness detection appears to be the common trend in this competition. Most of the algorithms are able to clearly separate spoof attempts from real accesses. The results suggest the investigation of more complex attacks.


international conference on biometrics | 2013

Can face anti-spoofing countermeasures work in a real world scenario?

Tiago de Freitas Pereira; André Anjos; José Mario De Martino; Sébastien Marcel

User authentication is an important step to protect information and in this field face biometrics is advantageous. Face biometrics is natural, easy to use and less human-invasive. Unfortunately, recent work has revealed that face biometrics is vulnerable to spoofing attacks using low-tech equipments. This article assesses how well existing face anti-spoofing countermeasures can work in a more realistic condition. Experiments carried out with two freely available video databases (Replay Attack Database and CASIA Face Anti-Spoofing Database) show low generalization and possible database bias in the evaluated countermeasures. To generalize and deal with the diversity of attacks in a real world scenario we introduce two strategies that show promising results.


Eurasip Journal on Image and Video Processing | 2014

Face liveness detection using dynamic texture

Tiago de Freitas Pereira; Jukka Komulainen; André Anjos; José Mario De Martino; Abdenour Hadid; Matti Pietikäinen; Sébastien Marcel

User authentication is an important step to protect information, and in this context, face biometrics is potentially advantageous. Face biometrics is natural, intuitive, easy to use, and less human-invasive. Unfortunately, recent work has revealed that face biometrics is vulnerable to spoofing attacks using cheap low-tech equipment. This paper introduces a novel and appealing approach to detect face spoofing using the spatiotemporal (dynamic texture) extensions of the highly popular local binary pattern operator. The key idea of the approach is to learn and detect the structure and the dynamics of the facial micro-textures that characterise real faces but not fake ones. We evaluated the approach with two publicly available databases (Replay-Attack Database and CASIA Face Anti-Spoofing Database). The results show that our approach performs better than state-of-the-art techniques following the provided evaluation protocols of each database.


international conference on biometrics | 2013

The 2nd competition on counter measures to 2D face spoofing attacks

Ivana Chingovska; Jimei Yang; Zhen Lei; Dong Yi; Stan Z. Li; O. Kahm; C. Glaser; Naser Damer; Arjan Kuijper; Alexander Nouak; Jukka Komulainen; Tiago de Freitas Pereira; S. Gupta; S. Khandelwal; S. Bansal; A. Rai; T. Krishna; D. Goyal; Muhammad-Adeel Waris; Honglei Zhang; Iftikhar Ahmad; Serkan Kiranyaz; Moncef Gabbouj; Roberto Tronci; Maurizio Pili; Nicola Sirena; Fabio Roli; Javier Galbally; J. Ficrrcz; Allan da Silva Pinto

As a crucial security problem, anti-spoofing in biometrics, and particularly for the face modality, has achieved great progress in the recent years. Still, new threats arrive inform of better, more realistic and more sophisticated spoofing attacks. The objective of the 2nd Competition on Counter Measures to 2D Face Spoofing Attacks is to challenge researchers to create counter measures effectively detecting a variety of attacks. The submitted propositions are evaluated on the Replay-Attack database and the achieved results are presented in this paper.


international conference on computer vision | 2012

LBP - TOP based countermeasure against face spoofing attacks

Tiago de Freitas Pereira; André Anjos; José Mario De Martino; Sébastien Marcel

User authentication is an important step to protect information and in this field face biometrics is advantageous. Face biometrics is natural, easy to use and less human-invasive. Unfortunately, recent work has revealed that face biometrics is vulnerable to spoofing attacks using low-tech cheap equipments. This article presents a countermeasure against such attacks based on the LBP−TOP operator combining both space and time information into a single multiresolution texture descriptor. Experiments carried out with the REPLAY ATTACK database show a Half Total Error Rate (HTER) improvement from 15.16% to 7.60%.


international conference on biometrics | 2013

Complementary countermeasures for detecting scenic face spoofing attacks

Jukka Komulainen; Abdenour Hadid; Matti Pietikäinen; André Anjos; Sébastien Marcel

The face recognition community has finally started paying more attention to the long-neglected problem of spoofing attacks. The number of countermeasures is gradually increasing and fairly good results have been reported on the publicly available databases. There exists no superior antispoofing technique due to the varying nature of attack scenarios and acquisition conditions. Therefore, it is important to find out complementary countermeasures and study how they should be combined in order to construct an easily extensible anti-spoofing framework. In this paper, we address this issue by studying fusion of motion and texture based countermeasures under several types of scenic face attacks. We provide an intuitive way to explore the fusion potential of different visual cues and show that the performance of the individual methods can be vastly improved by performing fusion at score level. The Half-Total Error Rate (HTER) of the best individual countermeasure was decreased from 11.2% to 5.1% on the Replay Attack Database. More importantly, we question the idea of using complex classification schemes in individual countermeasures, since nearly same fusion performance is obtained by replacing them with a simple linear one. In this manner, the computational efficiency and also probably the generalization ability of the resulting anti-spoofing framework are increased.


IET Biometrics | 2014

Motion-based counter-measures to photo attacks in face recognition

André Anjos; Murali Mohan Chakka; Sébastien Marcel

Identity spoofing is a contender for high-security face recognition applications. With the advent of social media and globalized search, our face images and videos are wide-spread on the internet and can be potentially used to attack biometric systems without previous user consent. Yet, research to counter these threats is just on its infancy – we lack public standard databases, protocols to measure spoofing vulnerability and baseline methods to detect these attacks. The contributions of this work to the area are three-fold: firstly we introduce a publicly available PHOTO-ATTACK database with associated protocols to measure the effectiveness of counter-measures. Based on the data available, we conduct a study on current state-of-the-art spoofing detection algorithms based on motion analysis, showing they fail under the light of these new dataset. By last, we propose a new technique of counter-measure solely based on foreground/background motion correlation using Optical Flow that outperforms all other algorithms achieving nearly perfect scoring with an equal-error rate of 1.52% on the available test data. The source code leading to the reported results is made available for the replicability of findings in this article.


computer vision and pattern recognition | 2013

Anti-spoofing in Action: Joint Operation with a Verification System

Ivana Chingovska; André Anjos; Sébastien Marcel

Besides the recognition task, todays biometric systems need to cope with additional problem: spoofing attacks. Up to date, academic research considers spoofing as a binary classification problem: systems are trained to discriminate between real accesses and attacks. However, spoofing counter-measures are not designated to operate stand-alone, but as a part of a recognition system they will protect. In this paper, we study techniques for decision- level and score-level fusion to integrate a recognition and anti-spoofing systems, using an open-source framework that handles the ternary classification problem (clients, impostors and attacks) transparently. By doing so, we are able to report the impact of different spoofing counter-measures, fusion techniques and thresholding on the overall performance of the final recognition system. For a specific use- case covering face verification, experiments show to what extent simple fusion improves the trustworthiness of the system when exposed to spoofing attacks.

Collaboration


Dive into the André Anjos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge