André Benine-Neto
IFSTTAR
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by André Benine-Neto.
international conference on intelligent transportation systems | 2010
André Benine-Neto; Stefano Scalzi; Saïd Mammar; Mariana Netto
This paper presents the design and simulation tests of a steering assistance for passenger vehicles based on a dynamic state feedback controller. Its main purpose is to avoid unintended lane departure and collisions. The design of the proposed lane keeping system takes into account the road curvature, considered as an exogenous input, into its internal model. The computation of the control law has been achieved by linking Lyapunov theory of stability to Bilinear Matrix Inequalities which considers bounds in the control input and minimises the reachable set of the vehicle after activation. This control strategy ensures convergence of the lateral offset to zero, even in curvy roads. Simulations show the performance of the controller and an extended application for collision avoidance.
ieee intelligent vehicles symposium | 2010
André Benine-Neto; Stefano Scalzi; Mariana Netto; Saïd Mammar; William Pasillas-Lépine
This paper shows that an active front steering control, that considers the nonlinear behaviour of the tire-road forces, can be designed by parameterizing the vehicle dynamics with respect to the measurable yaw rate and taking into account the steady state behaviour of the vehicle. In order to ensure the tracking of the yaw rate reference signal on the basis of the yaw rate tracking error, despite constant disturbances and parameters uncertainties, the proposed control strategy uses a proportional integral (PI) control, in which the gains depend on the defined parametrized vehicle dynamics. The proposed control system switches depending on the yaw rate as it is a variable measured at low cost. The stability is proved by a piecewise quadratic Lyapunov function using linear matrix inequalities technique. Several simulations, including disturbances rejections and step references, are carried out on a standard nonlinear CarSim D-Class vehicle model to explore the robustness with respect to unmodelled effects such as combined lateral and longitudinal tire forces, pitch, roll and driver dynamics. The simulations confirm that the proposed piecewise linear (PWL) control can greatly improve the vehicle stability and is advantageous in very demanding manoeuvres.
Vehicle System Dynamics | 2013
André Benine-Neto; Saïd Mammar; Benoit Lusetti; Stefano Scalzi
This article presents the design of a lane departure avoidance system which is conceived to operate even in demanding manoeuvres with respect to the lateral vehicle dynamics. Piecewise affine state feedback and output feedback controllers are used to handle the nonlinear behaviour of the lateral tyre forces. The controllers are designed based on the search of a piecewise quadratic Lyapunov function casted as a bilinear matrix inequalities problem. Experimental tests demonstrate the performance of the controller in degraded road conditions.
advances in computing and communications | 2012
André Benine-Neto; Saïd Mammar
This paper presents the design and simulation test of a piecewise affine output-feedback controller for vehicle lane keeping. The design of the proposed lane keeping system takes into account the entire domain of lateral tire forces through piecewise affine approximations of the tire forces nonlinear behavior. The computation of the control law is casted as Bilinear Matrix Inequalities optimization procedure which is solved using the V-K-method to find simultaneously a piecewise quadratic Lyapunov function and the piecewise affine regulator and estimator structures. Simulation tests show the controlled car is able to well achieve the standard ISO-3888-2 transient maneuver.
advances in computing and communications | 2010
Stefano Scalzi; André Benine-Neto; Mariana Netto; William Pasillas-Lépine; Saïd Mammar
This paper shows that an active front steering control can be designed taking into account the nonlinear behaviour of the tire-road forces considering the vehicle dynamics with respect to the tire sideslip angle and by approximating the tire force characteristics by piecewise affine functions. The proposed control strategy involves the design of two control loops: the first one is a state feedback and it is designed to improve the vehicle dynamics using the pole placement techniques while the second control loop uses a PI control to ensure the tracking of constant yaw rate reference signal on the basis of the yaw rate tracking error despite constant disturbances and parameters uncertainties. Several simulations, including disturbances rejections and step references, are carried out on a standard CarSim D-Class vehicle model to explore the robustness with respect to unmodelled effects such as combined lateral and longitudinal tire forces, pitch, roll and driver dynamics. The simulations confirm that the proposed PWL control can greatly improve the vehicle stability and may be advantageous in very demanding manoeuvres in comparison with the use of the proposed controller designed for the linear region only.
chinese control and decision conference | 2011
Saïd Mammar; André Benine-Neto; Sebastien Glaser; Naima Ait Oufroukh
This paper presents the design and the simulation test of a Takagi-Sugeno (TS) fuzzy output feedback for yaw motion control. The control synthesis is conducted on a nonlinear model in which tire-road interactions are modeled using Pacejkas magic formula. Using sector approximation, a TS fuzzy model is obtained. It is able to handle explicitly the nonlinear Pacejka lateral tire forces including the decreasing or saturated region. The controller acts through the steering of the front wheels and the differential braking torque generation. The computation of the controller takes into account the constraints that the trajectories of the controlled vehicle remain inside an invariant set. This is achieved using quadratic boundedness theory and Lyapunov stability. Some design parameters can be adjusted to handle the trade-off between safety constraints and comfort specifications. The solution to the associated problem is obtained using Linear and Bilinear Matrix Inequalities (LMI-BMI) methods. Simulation tests show the controlled car is able to well achieve standard maneuvers such as the ISO3888–2 transient maneuver and the sine with dwell maneuver.
International Journal of Vehicle Autonomous Systems | 2014
André Benine-Neto; Stefano Scalzi; Saïd Mammar; Mariana Netto; Benoit Lusetti
This paper presents the design and practical implementation of a lane departure avoidance assistance for passenger vehicles based on a state feedback dynamic controller. The road curvature is taken into account as an internal model to ensure convergence of the lateral offset to zero at steady state, even on curvy roads. Lyapunov theory and bilinear matrix inequalities including bounds in the control input and constraints for poles clustering are used to minimise the reachable set of the vehicle after activation of the assistance. The proposed control strategy is simulated in CarSim environment and successfully tested on a prototype vehicle.
international conference on intelligent transportation systems | 2011
André Benine-Neto; Stefano Scalzi; Saïd Mammar
This paper shows the design of a lane keeping steering control, that considers the nonlinear behavior of the tire-road lateral forces, by parameterizing its dynamics with respect to the yaw rate, as it is a low cost measurable variable. The proposed control strategy uses a piecewise linear (PWL) proportional double-integral derivative (PIIDi) control based on the lateral offset, measured by the vision system. The switches of the PWL controller are triggered by the yaw rate to take into account the nonlinear behavior of the tire forces. The stability is proved by a piecewise quadratic Lyapunov function. Simulation tests, including disturbances rejections and step references, are carried out on a standard CarSim D-Class vehicle model to explore the robustness with respect to unmodelled dynamics. The simulation results confirm that the proposed PWL control can greatly improve the vehicle stability and it is advantageous in very demanding maneuvers.
IV | 2011
André Benine-Neto; Saïd Mammar
IV | 2011
Naima Ait Oufroukh; André Benine-Neto; Zedjiga Yacine; Saïd Mammar; Sebastien Glaser