Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where André Catic is active.

Publication


Featured researches published by André Catic.


Advances in Immunology | 2003

The zebrafish as a model organism to study development of the immune system.

David Traver; Philippe Herbomel; Elizabeth Patton; Ryan D. Murphey; Jeffrey A. Yoder; Gary W. Litman; André Catic; Chris T. Amemiya; Leonard I. Zon; Nikolaus S. Trede

Publisher Summary Early events in the development of the primitive and definitive blood forming system are still poorly understood. Additionally, the specification of both B and T cells occurs during embryogenesis and, given the completion of this process before birth, are difficult to study in mammals by forward genetics. Historically, the major strength of the zebrafish has been the opportunity it offered to carry forward genetic screens in a vertebrate organism in a relatively restricted space. Establishing the zebrafish as a model system for the study of the immune system will provide an alternative and complementary tool to the use of forward genetic screens in mice. Rapid advances in a variety of fields have allowed the zebrafish to become a more versatile tool for immunology.


Nature Medicine | 2013

Differential regulation of myeloid leukemias by the bone marrow microenvironment

Daniela S. Krause; Keertik Fulzele; André Catic; Chia Chi Sun; David Dombkowski; Michael P. Hurley; Sanon Lezeau; Eyal C. Attar; Joy Y. Wu; Herbert Y. Lin; Paola Divieti-Pajevic; Robert P. Hasserjian; Ernestina Schipani; Richard A. Van Etten; David T. Scadden

Like their normal hematopoietic stem cell counterparts, leukemia stem cells (LSCs) in chronic myelogenous leukemia (CML) and acute myeloid leukemia (AML) are presumed to reside in specific niches in the bone marrow microenvironment (BMM) and may be the cause of relapse following chemotherapy. Targeting the niche is a new strategy to eliminate persistent and drug-resistant LSCs. CD44 (refs. 3,4) and interleukin-6 (ref. 5) have been implicated previously in the LSC niche. Transforming growth factor-β1 (TGF-β1) is released during bone remodeling and plays a part in maintenance of CML LSCs, but a role for TGF-β1 from the BMM has not been defined. Here, we show that alteration of the BMM by osteoblastic cell–specific activation of the parathyroid hormone (PTH) receptor attenuates BCR-ABL1 oncogene–induced CML-like myeloproliferative neoplasia (MPN) but enhances MLL-AF9 oncogene–induced AML in mouse transplantation models, possibly through opposing effects of increased TGF-β1 on the respective LSCs. PTH treatment caused a 15-fold decrease in LSCs in wild-type mice with CML-like MPN and reduced engraftment of immune-deficient mice with primary human CML cells. These results demonstrate that LSC niches in CML and AML are distinct and suggest that modulation of the BMM by PTH may be a feasible strategy to reduce LSCs, a prerequisite for the cure of CML.


Molecular and Cellular Biology | 2006

The SUMO-Specific Protease SENP5 Is Required for Cell Division

Alessandra Di Bacco; Jian Ouyang; Hsiang-Ying Lee; André Catic; Hidde L. Ploegh; Grace Gill

ABSTRACT Posttranslational modification of substrates by the small ubiquitin-like modifier, SUMO, regulates diverse biological processes, including transcription, DNA repair, nucleocytoplasmic trafficking, and chromosome segregation. SUMOylation is reversible, and several mammalian homologs of the yeast SUMO-specific protease Ulp1, termed SENPs, have been identified. We demonstrate here that SENP5, a previously uncharacterized Ulp1 homolog, has SUMO C-terminal hydrolase and SUMO isopeptidase activities. In contrast to other SENPs, the C-terminal catalytic domain of SENP5 preferentially processed SUMO-3 compared to SUMO-1 precursors and preferentially removed SUMO-2 and SUMO-3 from SUMO-modified RanGAP1 in vitro. In cotransfection assays, SENP5 preferentially reduced high-molecular-weight conjugates of SUMO-2 compared to SUMO-1 in vivo. Full-length SENP5 localized to the nucleolus. Deletion of the noncatalytic N-terminal domain led to loss of nucleolar localization and increased de-SUMOylation activity in vivo. Knockdown of SENP5 by RNA interference resulted in increased levels of SUMO-1 and SUMO-2/3 conjugates, inhibition of cell proliferation, defects in nuclear morphology, and appearance of binucleate cells, revealing an essential role for SENP5 in mitosis and/or cytokinesis. These findings establish SENP5 as a SUMO-specific protease required for cell division and suggest that mechanisms involving both the catalytic and noncatalytic domains determine the distinct substrate specificities of the mammalian SUMO-specific proteases.


Molecular Microbiology | 2006

Chlamydia trachomatis‐derived deubiquitinating enzymes in mammalian cells during infection

Shahram Misaghi; Zarine R. Balsara; André Catic; Eric Spooner; Hidde L. Ploegh; Michael N. Starnbach

Chlamydia trachomatis is an obligate intracellular bacterium that causes a variety of diseases in humans. C. trachomatis has a complex developmental cycle that depends on host cells for replication, during which gene expression is tightly regulated. Here we identify two C. trachomatis proteases that possess deubiquitinating and deneddylating activities. We have designated these proteins ChlaDub1 and ChlaDub2. The genes encoding ChlaDub1 and ChlaDub2 are present in all Chlamydia species except for Chlamydia pneumoniae, and their catalytic domains bear similarity to the catalytic domains of other eukaryotic ubiquitin‐like proteases (Ulp). The C. trachomatis DUBs react with activity‐based probes and hydrolyse ubiquitinated and neddylated substrates. ChlaDub1 and ChlaDub2 represent the first known bacterial DUBs that possess both deubiquitinating and deneddylating activities.


PLOS ONE | 2007

Screen for ISG15-crossreactive Deubiquitinases

André Catic; Edda Fiebiger; Gregory A. Korbel; Daniel Blom; Paul J. Galardy; Hidde L. Ploegh

Background The family of ubiquitin-like molecules (UbLs) comprises several members, each of which has sequence, structural, or functional similarity to ubiquitin. ISG15 is a homolog of ubiquitin in vertebrates and is strongly upregulated following induction by type I interferon. ISG15 can be covalently attached to proteins, analogous to ubiquitination and with actual support of ubiquitin conjugating factors. Specific proteases are able to reverse modification with ubiquitin or UbLs by hydrolyzing the covalent bond between their C-termini and substrate proteins. The tail regions of ubiquitin and ISG15 are identical and we therefore hypothesized that promiscuous deubiquitinating proteases (DUBs) might exist, capable of recognizing both ubiquitin and ISG15. Results We have cloned and expressed 22 human DUBs, representing the major clades of the USP protease family. Utilizing suicide inhibitors based on ubiquitin and ISG15, we have identified USP2, USP5 (IsoT1), USP13 (IsoT3), and USP14 as ISG15-reactive proteases, in addition to the bona fide ISG15-specific protease USP18 (UBP43). USP14 is a proteasome-associated DUB, and its ISG15 isopeptidase activity increases when complexed with the proteasome. Conclusions By evolutionary standards, ISG15 is a newcomer among the UbLs and it apparently not only utilizes the conjugating but also the deconjugating machinery of its more established relative ubiquitin. Functional overlap between these two posttranslational modifiers might therefore be more extensive than previously appreciated and explain the rather innocuous phenotype of ISG15 null mice.


Microbes and Infection | 1999

Introduction of protein or DNA delivered via recombinant Salmonella typhimurium into the major histocompatibility complex class I presentation pathway of macrophages

André Catic; Guido Dietrich; Ivo Gentschev; Werner Goebel; Stefan H. E. Kaufmann; Jürgen Hess

Recombinant (r) Salmonella typhimurium aroA strains which display the hen egg ovalbumin OVA(257-264) peptide SIINFEKL in secreted form were constructed. In addition, attenuated rS. typhimurium pcDNA-OVA constructs harbouring a eukaryotic expression plasmid encoding complete OVA were used to introduce the immunodominant OVA(257-264) epitope into the major histocompatibility complex (MHC) class I presentation pathway. Both modes of antigen delivery (DNA and protein) by Salmonella vaccine carriers stimulated OVA(257-264)-specific CD8 T-cell hybridomas. An in vitro infection system was established that allowed both rSalmonella carrier devices to facilitate MHC class I delivery of OVA(257-264) by coexpression of listeriolysin (Hly) or by coinfection with rS. typhimurium Hlys (Hess J., Gentschev I., Miko D., Welzel M., Ladel C., Goebel W., Kaufmann S.H.E., Proc. Natl. Acad. Sci. USA 93 (1996) 1458-1463). Coexpression of Hly and coinfection with rS. typhimurium Hlys slightly improved MHC class I processing of OVA. Our data provide further evidence for the feasibility of attenuated, Hly-expressing rS. typhimurium carriers secreting heterologous antigens or harbouring heterologous DNA as effective vaccines for stimulating CD8 T cells in addition to CD4 T cells.


Molecular Microbiology | 2006

Identification by functional proteomics of a deubiquitinating/deNeddylating enzyme in Plasmodium falciparum

Katerina Artavanis-Tsakonas; Shahram Misaghi; Christy A. Comeaux; André Catic; Eric Spooner; Manoj T. Duraisingh; Hidde L. Ploegh

Ubiquitination is a post‐translational modification implicated in a variety of cellular functions, including transcriptional regulation, protein degradation and membrane protein trafficking. Ubiquitin and the enzymes that act on it, although conserved and essential in eukaryotes, have not been well studied in parasites, despite sequencing of several parasite genomes. Several putative ubiquitin hydrolases have been identified in Plasmodium falciparum based on sequence homology alone, with no evidence of expression or function. Here we identify the first deubiquitinating enzyme in P. falciparum, PfUCH54, by its activity. We show that PfUCH54 also has deNeddylating activity, as assayed by a mammalian Nedd8‐based probe. This activity is absent from mammalian homologues of PfUCH54. Given the importance of parasitic membrane protein trafficking as well as protein degradation in the virulence of this parasite, this family of enzymes may represent a target for pharmacological intervention with this disease.


PLOS ONE | 2007

ElaD, a Deubiquitinating protease expressed by E. coli.

André Catic; Shahram Misaghi; Gregory A. Korbel; Hidde L. Ploegh

Background Ubiquitin and ubiquitin-like proteins (Ubl) are designed to modify polypeptides in eukaryotes. Covalent binding of ubiquitin or Ubls to substrate proteins can be reversed by specific hydrolases. One particular set of cysteine proteases, the CE clan, which targets ubiquitin and Ubls, has homologs in eukaryotes, prokaryotes, and viruses. Findings We have cloned and analyzed the E. coli protein elaD, which is distantly related to eukaryotic CE clan members of the ULP/SENP protease family that are specific for SUMO and Nedd8. Previously misannotated as a putative sulfatase/phosphatase, elaD is an efficient and specific deubiquitinating enzyme in vitro. Interestingly, elaD is present in all intestinal pathogenic E. coli strains, but conspicuously absent from extraintestinal pathogenic strains (ExPECs). Further homologs of this protease can be found in Acanthamoeba Polyphaga Mimivirus, and in Alpha-, Beta-and Gammaproteobacteria. Conclusion The expression of ULP/SENP-related hydrolases in bacteria therefore extends to plant pathogens and medically relevant strains of Escherichia coli, Legionella pneumophila, Rickettsiae, Chlamydiae, and Salmonellae, in which the elaD ortholog sseL has recently been identified as a virulence factor with deubiquitinating activity. As a counterpoint, our phylogenetic and functional examination reveals that ancient eukaryotic ULP/SENP proteases also have the potential of ubiquitin-specific hydrolysis, suggesting an early common origin of this peptidase clan.


Cell | 2013

Genome-wide map of nuclear protein degradation shows NCoR1 turnover as a key to mitochondrial gene regulation.

André Catic; Carol Y. Suh; Cedric T. Hill; Laurence Daheron; Theresa Henkel; Keith W. Orford; David Dombkowski; Tao Liu; X. Shirley Liu; David T. Scadden

Transcription factor activity and turnover are functionally linked, but the global patterns by which DNA-bound regulators are eliminated remain poorly understood. We established an assay to define the chromosomal location of DNA-associated proteins that are slated for degradation by the ubiquitin-proteasome system. The genome-wide map described here ties proteolysis in mammalian cells to active enhancers and to promoters of specific gene families. Nuclear-encoded mitochondrial genes in particular correlate with protein elimination, which positively affects their transcription. We show that the nuclear receptor corepressor NCoR1 is a key target of proteolysis and physically interacts with the transcription factor CREB. Proteasome inhibition stabilizes NCoR1 in a site-specific manner and restrains mitochondrial activity by repressing CREB-sensitive genes. In conclusion, this functional map of nuclear proteolysis links chromatin architecture with local protein stability and identifies proteolytic derepression as highly dynamic in regulating the transcription of genes involved in energy metabolism.


The EMBO Journal | 2007

Sequence and structure evolved separately in a ribosomal ubiquitin variant

André Catic; Zhen-Yu J. Sun; Daniel M. Ratner; Shahram Misaghi; Eric Spooner; John Samuelson; Gerhard Wagner; Hidde L. Ploegh

Encoded by a multigene family, ubiquitin is expressed in the form of three precursor proteins, two of which are fusions to the ribosomal subunits S27a and L40. Ubiquitin assists in ribosome biogenesis and also functions as a post‐translational modifier after its release from S27a or L40. However, several species do not conserve the ribosomal ubiquitin domains. We report here the solution structure of a distant variant of ubiquitin, found at the N‐terminus of S27a in Giardia lamblia, referred to as GlUbS27a. Despite the considerable evolutionary distance that separates ubiquitin from GlUbS27a, the structure of GlUbS27a is largely identical to that of ubiquitin. The variant domain remains attached to S27a and is part of the assembled holoribosome. Thus, conservation of tertiary structure suggests a role of this variant as a chaperone, while conservation of the primary structure—necessary for ubiquitins function as a post‐translational modifier—is no longer required. Based on these observations, we propose a model to explain the origin of the widespread ubiquitin superfold in eukaryotes.

Collaboration


Dive into the André Catic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Spooner

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge