Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where André-Denis G. Wright is active.

Publication


Featured researches published by André-Denis G. Wright.


Archaea | 2010

Methanogens: Methane Producers of the Rumen and Mitigation Strategies

Sarah E. Hook; André-Denis G. Wright; B.W. McBride

Methanogens are the only known microorganisms capable of methane production, making them of interest when investigating methane abatement strategies. A number of experiments have been conducted to study the methanogen population in the rumen of cattle and sheep, as well as the relationship that methanogens have with other microorganisms. The rumen methanogen species differ depending on diet and geographical location of the host, as does methanogenesis, which can be reduced by modifying dietary composition, or by supplementation of monensin, lipids, organic acids, or plant compounds within the diet. Other methane abatement strategies that have been investigated are defaunation and vaccines. These mitigation methods target the methanogen population of the rumen directly or indirectly, resulting in varying degrees of efficacy. This paper describes the methanogens identified in the rumens of cattle and sheep, as well as a number of methane mitigation strategies that have been effective in vivo.


Applied and Environmental Microbiology | 2004

Molecular Diversity of Rumen Methanogens from Sheep in Western Australia

André-Denis G. Wright; Andrew J. Williams; Barbara Winder; Claus T. Christophersen; T. Sharon L. Rodgers; Kellie D. Smith

ABSTRACT The molecular diversity of rumen methanogens in sheep in Australia was investigated by using individual 16S rRNA gene libraries prepared from the rumen contents obtained from six merino sheep grazing pasture (326 clones), six sheep fed an oaten hay-based diet (275 clones), and five sheep fed a lucerne hay-based diet (132 clones). A total of 733 clones were examined, and the analysis revealed 65 phylotypes whose sequences (1,260 bp) were similar to those of cultivated methanogens belonging to the order Methanobacteriales. Pasture-grazed sheep had more methanogen diversity than sheep fed either the oaten hay or lucerne hay diet. Methanobrevibacter strains SM9, M6, and NT7 accounted for over 90% of the total number of clones identified. M6 was more prevalent in grazing sheep, and SM9, despite being found in 16 of the 17 sheep, was more prevalent in sheep fed the lucerne-based diet. Five new species were identified. Two of these species exhibited very little sequence similarity to any cultivated methanogens and were found eight times in two of the six sheep that were grazing pasture. These unique sequences appear to represent a novel group of rumen archaea that are atypical for the rumen environment.


Applied and Environmental Microbiology | 2007

Molecular Diversity of Methanogens in Feedlot Cattle from Ontario and Prince Edward Island, Canada

André-Denis G. Wright; Clare H. Auckland; Denis H. Lynn

ABSTRACT The molecular diversity of rumen methanogens in feedlot cattle and the composition of the methanogen populations in these animals from two geographic locations were investigated using 16S rRNA gene libraries prepared from pooled PCR products from 10 animals in Ontario (127 clones) and 10 animals from Prince Edward Island (114 clones). A total of 241 clones were examined, with Methanobrevibacter ruminantium accounting for more than one-third (85 clones) of the clones identified. From these 241 clones, 23 different 16S rRNA phylotypes were identified. Feedlot cattle from Ontario, which were fed a corn-based diet, revealed 11 phylotypes (38 clones) not found in feedlot cattle from Prince Edward Island, whereas the Prince Edward Island cattle, which were fed potato by-products as a finishing diet, had 7 phylotypes (42 clones) not found in cattle from Ontario. Five sequences, representing the remaining 161 clones (67% of the clones), were common in both herds. Of the 23 different sequences, 10 sequences (136 clones) were 89.8 to 100% similar to those from cultivated methanogens belonging to the orders Methanobacteriales, Methanomicrobiales, and Methanosarcinales, and the remaining 13 sequences (105 clones) were 74.1 to 75.8% similar to those from Thermoplasma volcanium and Thermoplasma acidophilum. Overall, nine possible new species were identified from the two clone libraries, including two new species belonging to the order Methanobacteriales and a new genus/species within the order Methanosarcinales. From the present survey, it is difficult to conclude whether the geographical isolation between these two herds or differences between the two finishing diets directly influenced community structure in the rumen. Further studies are warranted to properly assess the differences between these two finishing diets.


Journal of Microbiological Methods | 2003

Improved strategy for presumptive identification of methanogens using 16S riboprinting

André-Denis G. Wright; Carolyn Pimm

The predicted 16S riboprint patterns of 10 restriction endonucleases for 26 diverse methanogens were compared to actual patterns produced on agarose gels. The observed patterns corroborated the expected riboprints. Our analyses confirmed that the endonuclease HaeIII gave the best results generating 15 different riboprint sets. Six of these 15 riboprints represented more than one strain. Of these, three riboprint sets were further differentiated: Methanomicrobium mobile, Methanolacinia paynteri, and Methanoplanus petrolearius were differentiated from each other by the endonuclease AluI; Methanofollis liminatans, Methanospirillum hungatei, and Methanoculleus bourgensis were differentiated from each other by HpaII; and the combination of FokI and MluNI was used to differentiate Methanobrevibacter sp. ZA-10, and Methanobrevibacter arboriphilicus strains DH-1, AZ, and DC from each other. We could not differentiate the following pairs of strains from each other: Methanosarcina mazeii S-6 and C16, Methanobacterium bryantii MoH and MoH-G, Methanobacterium thermoautotrophicum GC-1 and DeltaH, and Methanobrevibacter arborophillicus DC and A2. This riboprint strategy provided a simple and rapid method to presumptively identify 22 of the 26 diverse strains of methanogens belonging to 13 genera from a range of environments.


Applied and Environmental Microbiology | 2009

Long-Term Monensin Supplementation Does Not Significantly Affect the Quantity or Diversity of Methanogens in the Rumen of the Lactating Dairy Cow

Sarah E. Hook; Korinne S. Northwood; André-Denis G. Wright; B.W. McBride

ABSTRACT A long-term monensin supplementation trial involving lactating dairy cattle was conducted to determine the effect of monensin on the quantity and diversity of rumen methanogens in vivo. Fourteen cows were paired on the basis of days in milk and parity and allocated to one of two treatment groups, receiving (i) a control total mixed ration (TMR) or (ii) a TMR with 24 mg of monensin premix/kg of diet dry matter. Rumen fluid was obtained using an ororuminal probe on day −15 (baseline) and days 20, 90, and 180 following treatment. Throughout the 6-month experiment, the quantity of rumen methanogens was not significantly affected by monensin supplementation, as measured by quantitative real-time PCR. The diversity of the rumen methanogen population was investigated using denaturing gradient gel electrophoresis (DGGE) and 16S rRNA clone gene libraries. DGGE analysis at each sampling point indicated that the molecular diversity of rumen methanogens from monensin-treated cattle was not significantly different from that of rumen methanogens from control cattle. 16S rRNA gene libraries were constructed from samples obtained from the rumen fluids of five cows, with a total of 166 clones examined. Eleven unique 16S rRNA sequences or phylotypes were identified, five of which have not been recognized previously. The majority of clones (98.2%) belonged to the genus Methanobrevibacter, with all libraries containing Methanobrevibacter strains M6 and SM9 and a novel phylotype, UG3322.2. Overall, long-term monensin supplementation was not found to significantly alter the quantity or diversity of methanogens in the rumens of lactating dairy cattle in the present study.


Applied and Environmental Microbiology | 2009

A Vaccine against Rumen Methanogens Can Alter the Composition of Archaeal Populations

Yvette J. Williams; Sam Popovski; Suzanne M. Rea; Lucy Skillman; Andrew F. Toovey; Korinne S. Northwood; André-Denis G. Wright

ABSTRACT The objectives of this study were to formulate a vaccine based upon the different species/strains of methanogens present in sheep intended to be immunized and to determine if a targeted vaccine could be used to decrease the methane output of the sheep. Two 16S rRNA gene libraries were used to survey the methanogenic archaea in sheep prior to vaccination, and methanogens representing five phylotypes were found to account for >52% of the different species/strains of methanogens detected. A vaccine based on a mixture of these five methanogens was then formulated, and 32 sheep were vaccinated on days 0, 28, and 103 with either a control or the anti-methanogen vaccine. Enzyme-linked immunosorbent assay analysis revealed that each vaccination with the anti-methanogen formulation resulted in higher specific immunoglobulin G titers in plasma, saliva, and rumen fluid. Methane output levels corrected for dry-matter intake for the control and treatment groups were not significantly different, and real-time PCR data also indicated that methanogen numbers were not significantly different for the two groups after the second vaccination. However, clone library data indicated that methanogen diversity was significantly greater in sheep receiving the anti-methanogen vaccine and that the vaccine may have altered the composition of the methanogen population. A correlation between 16S rRNA gene sequence relatedness and cross-reactivity for the methanogens (R2 = 0.90) also exists, which suggests that a highly specific vaccine can be made to target specific strains of methanogens and that a more broad-spectrum approach is needed for success in the rumen. Our data also suggest that methanogens take longer than 4 weeks to adapt to dietary changes and call into question the validity of experimental results based upon a 2- to 4-week acclimatization period normally observed for bacteria.


Microbial Ecology | 2008

Methanobrevibacter Phylotypes are the Dominant Methanogens in Sheep from Venezuela

André-Denis G. Wright; Xuanli Ma; Nestor E. Obispo

Rumen methanogens in sheep from Venezuela were examined using 16S rRNA gene libraries and denaturing gradient gel electrophoresis (DGGE) profiles prepared from pooled and individual PCR products from the rumen contents from 10 animals. A total of 104 clones were examined, revealing 14 different 16S rRNA gene sequences or phylotypes. Of the 14 phylotypes, 13 (99 of 104 clones) belonged to the genus Methanobrevibacter, indicating that the genus Methanobrevibacter is the most dominant component of methanogen populations in sheep in Venezuela. The largest group of clones (41 clones) was 97.9–98.5% similar to Methanobrevibacter gottschalkii. Two sequences were identified as possible new species, one belonging to the genus Methanobrevibacter and the other belonging to the genus Methanobacterium. DGGE analysis of the rumen contents from individual animals also revealed 14 different bands with a range of 4–9 bands per animal.


BMC Microbiology | 2012

Molecular analysis of methanogenic archaea in the forestomach of the alpaca ( Vicugna pacos )

Benoit St-Pierre; André-Denis G. Wright

BackgroundMethanogens that populate the gastrointestinal tract of livestock ruminants contribute significantly to methane emissions from the agriculture industry. There is a great need to analyze archaeal microbiomes from a broad range of host species in order to establish causal relationships between the structure of methanogen communities and their potential for methane emission. In this report, we present an investigation of methanogenic archaeal populations in the foregut of alpacas.ResultsWe constructed individual 16S rRNA gene clone libraries from five sampled animals and recovered a total of 947 sequences which were assigned to 51 species-level OTUs. Individuals were found to each have between 21 and 27 OTUs, of which two to six OTUs were unique. As reported in other host species, Methanobrevibacter was the dominant genus in the alpaca, representing 88.3% of clones. However, the alpaca archaeal microbiome was different from other reported host species, as clones showing species-level identity to Methanobrevibacter millerae were the most abundant.ConclusionFrom our analysis, we propose a model to describe the population structure of Methanobrevibacter-related methanogens in the alpaca and in previously reported host species, which may contribute in unraveling the complexity of symbiotic archaeal communities in herbivores.


Microbial Ecology | 2009

Molecular Diversity of the Rumen Microbiome of Norwegian Reindeer on Natural Summer Pasture

Monica A. Sundset; Joan E. Edwards; Yan Fen Cheng; Roberto S. Senosiain; Maria N. Fraile; Korinne S. Northwood; Kirsti E. Præsteng; Trine Glad; Svein D. Mathiesen; André-Denis G. Wright

The molecular diversity of the rumen microbiome was investigated in five semi-domesticated adult female Norwegian reindeer (Rangifer tarandus tarandus) grazing on natural summer pastures on the coast of northern Norway (71.00° N, 25.30° E). Mean population densities (numbers per gram wet weight) of methanogenic archaea, rumen bacteria and ciliate protozoa, estimated using quantitative real-time polymerase chain reaction (PCR), were 3.17 × 109, 5.17 × 1011 and 4.02 × 107, respectively. Molecular diversity of rumen methanogens was revealed using a 16S rRNA gene library (54 clones) constructed using pooled PCR products from the whole rumen contents of the five individual reindeer. Based upon a similarity criterion of <97%, a total of 19 distinct operational taxonomic units (OTUs) were identified, nine of which are potential new species. The 16S rRNA sequences generated from the reindeer rumen exhibited a high degree of sequence similarity to methanogens affiliated with the families Methanobacteriaceae (14 OTUs) and Methanosarcinaceae (one OTU). Four of the OTUs detected belonged to a group of uncultivated archaea previously found in domestic ruminants and thought to be dominant in the rumen together with Methanobrevibacter spp. Denaturing gradient gel electrophoresis profiling of the rumen bacterial 16S rRNA gene and the protozoal 18S rRNA gene indicated a high degree of animal variation, although some bands were common to all individuals. Automated ribosomal intergenic spacer analysis (ARISA) profiling of the ruminal Neocallimastigales population indicated that the reindeer are likely to contain more than one type of anaerobic fungus. The ARISA profile from one animal was distinct from the other four. This is the first molecular investigation of the ruminal methanogenic archaea in reindeer, revealing higher numbers than expected based on methane emission data available. Also, many of the reindeer archaeal 16S rRNA gene sequences were similar to those reported in domesticated ruminants in Australia, Canada, China, New Zealand and Venezuela, supporting previous findings that there seems to be no host type or geographical effect on the methanogenic archaea community structure in ruminants.


Applied and Environmental Microbiology | 2006

Development and Validation of a Real-Time PCR Method To Quantify Rumen Protozoa and Examination of Variability between Entodinium Populations in Sheep Offered a Hay-Based Diet

Lucy Skillman; Andrew F. Toovey; Andrew J. Williams; André-Denis G. Wright

ABSTRACT PCR and real-time PCR primers for the 18S rRNA gene of rumen protozoa (Entodinium and Dasytricha spp.) were designed, and their specificities were tested against a range of rumen microbes and protozoal groups. External standards were prepared from DNA extracts of a rumen matrix containing known numbers and species of protozoa. The efficiency of PCR (ε) was calculated following amplification of serial dilutions of each standard and was used to calculate the numbers of protozoa in each sample collected; serial dilutions of DNA were used similarly to calculate PCR efficiency. Species of Entodinium, the most prevalent of the rumen protozoa, were enumerated in rumen samples collected from 100 1-year-old merino wethers by microscopy and real-time PCR. Both the counts developed by the real-time PCR method and microscopic counts were accurate and repeatable, with a strong correlation between them (R2 = 0.8), particularly when the PCR efficiency was close to optimal (i.e., two copies per cycle). The advantages and disadvantages of each procedure are discussed. Entodinium represented on average 98% of the total protozoa, and populations within the same sheep were relatively stable, but greater variation occurred between different sheep (100 and 106 entodinia per gram of rumen contents). With this inherent variability, it was estimated that, to detect a statistically significant (P = 0.05) 20% change in Entodinium populations, 52 sheep per treatment group would be required.

Collaboration


Dive into the André-Denis G. Wright's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew F. Toovey

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Carolyn Pimm

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Korinne S. Northwood

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sam Popovski

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Researchain Logo
Decentralizing Knowledge