Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andre Levchenko is active.

Publication


Featured researches published by Andre Levchenko.


ALTEX-Alternatives to Animal Experimentation | 2018

3S - Systematic, systemic, and systems biology and toxicology

Lena Smirnova; Nicole Kleinstreuer; Raffaella Corvi; Andre Levchenko; Suzanne Fitzpatrick; Thomas Hartung

Summary A biological system is more than the sum of its parts – it accomplishes many functions via synergy. Deconstructing the system down to the molecular mechanism level necessitates the complement of reconstructing functions on all levels, i.e., in our conceptualization of biology and its perturbations, our experimental models and computer modelling. Toxicology contains the somewhat arbitrary subclass “systemic toxicities”; however, there is no relevant toxic insult or general disease that is not systemic. At least inflammation and repair are involved that require coordinated signaling mechanisms across the organism. However, the more body components involved, the greater the challenge to recapitulate such toxicities using non-animal models. Here, the shortcomings of current systemic testing and the development of alternative approaches are summarized. We argue that we need a systematic approach to integrating existing knowledge as exemplified by systematic reviews and other evidence-based approaches. Such knowledge can guide us in modelling these systems using bioengineering and virtual computer models, i.e., via systems biology or systems toxicology approaches. Experimental multi-organon-chip and microphysiological systems (MPS) provide a more physiological view of the organism, facilitating more comprehensive coverage of systemic toxicities, i.e., the perturbation on organism level, without using substitute organisms (animals). The next challenge is to establish disease models, i.e., micropathophysiological systems (MPPS), to expand their utility to encompass biomedicine. Combining computational and experimental systems approaches and the challenges of validating them are discussed. The suggested 3S approach promises to leverage 21st century technology and systematic thinking to achieve a paradigm change in studying systemic effects.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs

Deok Ho Kim; Elizabeth A. Lipke; Pilnam Kim; Raymond Cheong; Susan A. Thompson; Michael Delannoy; Kahp Y. Suh; Leslie Tung; Andre Levchenko

Heart tissue possesses complex structural organization on multiple scales, from macro- to nano-, but nanoscale control of cardiac function has not been extensively analyzed. Inspired by ultrastructural analysis of the native tissue, we constructed a scalable, nanotopographically controlled model of myocardium mimicking the in vivo ventricular organization. Guided by nanoscale mechanical cues provided by the underlying hydrogel, the tissue constructs displayed anisotropic action potential propagation and contractility characteristic of the native tissue. Surprisingly, cell geometry, action potential conduction velocity, and the expression of a cell–cell coupling protein were exquisitely sensitive to differences in the substratum nanoscale features of the surrounding extracellular matrix. We propose that controlling cell–material interactions on the nanoscale can stipulate structure and function on the tissue level and yield novel insights into in vivo tissue physiology, while providing materials for tissue repair.


Journal of Cell Biology | 2012

Matrix nanotopography as a regulator of cell function

Deok Ho Kim; Paolo P. Provenzano; Christopher Smith; Andre Levchenko

Proapoptotic Bcl-2 family members, such as Bax, promote release of cytochrome c from mitochondria, leading to caspase activation and cell death. It was previously reported that modulator of apoptosis protein 1 (MOAP-1), an enhancer of Bax activation induced by DNA damage, is stabilized by Trim39, a protein of unknown function. In this paper, we show that MOAP-1 is a novel substrate of the anaphase-promoting complex (APC/C(Cdh1)) ubiquitin ligase. The influence of Trim39 on MOAP-1 levels stems from the ability of Trim39 (a RING domain E3 ligase) to directly inhibit APC/C(Cdh1)-mediated protein ubiquitylation. Accordingly, small interfering ribonucleic acid-mediated knockdown of Cdh1 stabilized MOAP-1, thereby enhancing etoposide-induced Bax activation and apoptosis. These data identify Trim39 as a novel APC/C regulator and provide an unexpected link between the APC/C and apoptotic regulation via MOAP-1.The architecture of the extracellular matrix (ECM) directs cell behavior by providing spatial and mechanical cues to which cells respond. In addition to soluble chemical factors, physical interactions between the cell and ECM regulate primary cell processes, including differentiation, migration, and proliferation. Advances in microtechnology and, more recently, nanotechnology provide a powerful means to study the influence of the ECM on cell behavior. By recapitulating local architectures that cells encounter in vivo, we can elucidate and dissect the fundamental signal transduction pathways that control cell behavior in critical developmental, physiological, and pathological processes.


Biophysical Journal | 2002

Models of Eukaryotic Gradient Sensing: Application to Chemotaxis of Amoebae and Neutrophils

Andre Levchenko; Pablo A. Iglesias

Eukaryotic cells can detect shallow gradients of chemoattractants with exquisite precision and respond quickly to changes in the gradient steepness and direction. Here, we describe a set of models explaining both adaptation to uniform increases in chemoattractant and persistent signaling in response to gradients. We demonstrate that one of these models can be mapped directly onto the biochemical signal-transduction pathways underlying gradient sensing in amoebae and neutrophils. According to this scheme, a locally acting activator (PI3-kinase) and a globally acting inactivator (PTEN or a similar phosphatase) are coordinately controlled by the G-protein activation. This signaling system adapts perfectly to spatially homogeneous changes in the chemoattractant. In chemoattractant gradients, an imbalance between the action of the activator and the inactivator results in a spatially oriented persistent signaling, amplified by a substrate supply-based positive feedback acting through small G-proteins. The amplification is activated only in a continuous presence of the external signal gradient, thus providing the mechanism for sensitivity to gradient alterations. Finally, based on this mapping, we make predictions concerning the dynamics of signaling. We propose that the underlying principles of perfect adaptation and substrate supply-based positive feedback will be found in the sensory systems of other chemotactic cell types.


Annual Review of Biomedical Engineering | 2009

Microengineered platforms for cell mechanobiology

Deok Ho Kim; Pak Kin Wong; Jungyul Park; Andre Levchenko; Yu Sun

Mechanical forces play important roles in the regulation of various biological processes at the molecular and cellular level, such as gene expression, adhesion, migration, and cell fate, which are essential to the maintenance of tissue homeostasis. In this review, we discuss emerging bioengineered tools enabled by microscale technologies for studying the roles of mechanical forces in cell biology. In addition to traditional mechanobiology experimental techniques, we review recent advances of microelectromechanical systems (MEMS)-based approaches for cell mechanobiology and discuss how microengineered platforms can be used to generate in vivo-like micromechanical environment in in vitro settings for investigating cellular processes in normal and pathophysiological contexts. These capabilities also have significant implications for mechanical control of cell and tissue development and cell-based regenerative therapies.


Nature | 2007

MAPK-mediated bimodal gene expression and adaptive gradient sensing in yeast.

Saurabh Paliwal; Pablo A. Iglesias; Kyle Campbell; Zoe Hilioti; Alex Groisman; Andre Levchenko

The mating pathway in Saccharomyces cerevisiae has been the focus of considerable research effort, yet many quantitative aspects of its regulation still remain unknown. Using an integrated approach involving experiments in microfluidic chips and computational modelling, we studied gene expression and phenotypic changes associated with the mating response under well-defined pheromone gradients. Here we report a combination of switch-like and graded pathway responses leading to stochastic phenotype determination in a specific range of pheromone concentrations. Furthermore, we show that these responses are critically dependent on mitogen-activated protein kinase (MAPK)-mediated regulation of the activity of the pheromone-response-specific transcription factor, Ste12, as well as on the autoregulatory feedback of Ste12. In particular, both the switch-like characteristics and sensitivity of gene expression in shmooing cells to pheromone concentration were significantly diminished in cells lacking Kss1, one of the MAP kinases activated in the mating pathway. In addition, the dynamic range of gradient sensing of Kss1-deficient cells was reduced compared with wild type. We thus provide unsuspected functional significance for this kinase in regulation of the mating response.


Science | 2011

Information transduction capacity of noisy biochemical signaling networks.

Raymond Cheong; Alex Rhee; Chiaochun Joanne Wang; Ilya Nemenman; Andre Levchenko

Noise limits information transfer through a single signaling pathway in a single cell to just one bit. Molecular noise restricts the ability of an individual cell to resolve input signals of different strengths and gather information about the external environment. Transmitting information through complex signaling networks with redundancies can overcome this limitation. We developed an integrative theoretical and experimental framework, based on the formalism of information theory, to quantitatively predict and measure the amount of information transduced by molecular and cellular networks. Analyzing tumor necrosis factor (TNF) signaling revealed that individual TNF signaling pathways transduce information sufficient for accurate binary decisions, and an upstream bottleneck limits the information gained via multiple integrated pathways. Negative feedback to this bottleneck could both alleviate and enhance its limiting effect, despite decreasing noise. Bottlenecks likewise constrain information attained by networks signaling through multiple genes or cells.


Nature Methods | 2005

A microfluidic chemostat for experiments with bacterial and yeast cells

Alex Groisman; Caroline Lobo; HoJung Cho; J Kyle Campbell; Yann S. Dufour; Ann M. Stevens; Andre Levchenko

Bacteria and yeast frequently exist as populations capable of reaching extremely high cell densities. With conventional culturing techniques, however, cell proliferation and ultimate density are limited by depletion of nutrients and accumulation of metabolites in the medium. Here we describe design and operation of microfabricated elastomer chips, in which chemostatic conditions are maintained for bacterial and yeast colonies growing in an array of shallow microscopic chambers. Walls of the chambers are impassable for the cells, but allow diffusion of chemicals. Thus, the chemical contents of the chambers are maintained virtually identical to those of the nearby channels with continuous flowthrough of a dynamically defined medium. We demonstrate growth of cell cultures to densely packed ensembles that proceeds exponentially in a temperature-dependent fashion, and we use the devices to monitor colony growth from a single cell and to analyze the cell response to an exogenously added autoinducer.


Biomaterials | 2009

Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients

Deok Ho Kim; Karam Han; Kshitiz Gupta; Keon Woo Kwon; Kahp-Yang Suh; Andre Levchenko

In this report, we describe using ultraviolet (UV)-assisted capillary force lithography (CFL) to create a model substratum of anisotropic micro- and nanotopographic pattern arrays with variable local density for the analysis of cell-substratum interactions. A single cell adhesion substratum with the constant ridge width (1 microm), and depth (400 nm) and variable groove widths (1-9.1 microm) allowed us to characterize the dependence of cellular responses, including cell shape, orientation, and migration, on the anisotropy and local density of the variable micro- and nanotopographic pattern. We found that fibroblasts adhering to the denser pattern areas aligned and elongated more strongly along the direction of ridges, vs. those on the sparser areas, exhibiting a biphasic dependence of the migration speed on the pattern density. In addition, cells responded to local variations in topography by altering morphology and migrating along the direction of grooves biased by the direction of pattern orientation (short term) and pattern density (long term), suggesting that single cells can sense the topography gradient. Molecular dynamic live cell imaging and immunocytochemical analysis of focal adhesions and actin cytoskeleton suggest that variable substratum topography can result in distinct types of cytoskeleton reorganization. We also demonstrate that fibroblasts cultured as monolayers on the same substratum retain most of the properties displayed by single cells. This result, in addition to demonstrating a more sophisticated method to study aspects of wound healing processes, strongly suggests that even in the presence of adhesive cell-cell interactions, the cues provided by the underlying substratum topography continue to exercise substantial influence on cell behavior. The described experimental platform might not only further our understanding of biomechanical regulation of cell-matrix interactions, but also contribute to bioengineering of devices with the optimally structured design of cell-material interface.


Journal of Clinical Investigation | 2012

Hypoxia-inducible factor–dependent breast cancer–mesenchymal stem cell bidirectional signaling promotes metastasis

Pallavi Chaturvedi; Daniele M. Gilkes; Carmen Chak-Lui Wong; Kshitiz; Weibo Luo; Huafeng Zhang; Hong Wei; Naoharu Takano; Luana Schito; Andre Levchenko; Gregg L. Semenza

Metastasis involves critical interactions between cancer and stromal cells. Intratumoral hypoxia promotes metastasis through activation of hypoxia-inducible factors (HIFs). We demonstrate that HIFs mediate paracrine signaling between breast cancer cells (BCCs) and mesenchymal stem cells (MSCs) to promote metastasis. In a mouse orthotopic implantation model, MSCs were recruited to primary breast tumors and promoted BCC metastasis to LNs and lungs in a HIF-dependent manner. Coculture of MSCs with BCCs augmented HIF activity in BCCs. Additionally, coculture induced expression of the chemokine CXCL10 in MSCs and the cognate receptor CXCR3 in BCCs, which was augmented by hypoxia. CXCR3 expression was blocked in cocultures treated with neutralizing antibody against CXCL10. Conversely, CXCL10 expression was blocked in MSCs cocultured with BCCs that did not express CXCR3 or HIFs. MSC coculture did not enhance the metastasis of HIF-deficient BCCs. BCCs and MSCs expressed placental growth factor (PGF) and its cognate receptor VEGFR1, respectively, in a HIF-dependent manner, and CXCL10 expression by MSCs was dependent on PGF expression by BCCs. PGF promoted metastasis of BCCs and also facilitated homing of MSCs to tumors. Thus, HIFs mediate complex and bidirectional paracrine signaling between BCCs and MSCs that stimulates breast cancer metastasis.

Collaboration


Dive into the Andre Levchenko's collaboration.

Top Co-Authors

Avatar

Deok Ho Kim

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Raymond Cheong

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Kshitiz

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin Lin

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge