Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where André P. Lourenço is active.

Publication


Featured researches published by André P. Lourenço.


Circulation-heart Failure | 2013

Myocardial Titin Hypophosphorylation Importantly Contributes to Heart Failure With Preserved Ejection Fraction in a Rat Metabolic Risk Model

Nazha Hamdani; Constantijn Franssen; André P. Lourenço; Inês Falcão-Pires; Dulce Fontoura; Sara Leite; Luisa Plettig; Begoña López; C. Ottenheijm; Peter Moritz Becher; Arantxa González; Carsten Tschöpe; Javier Díez; Wolfgang A. Linke; Adelino F. Leite-Moreira; Walter J. Paulus

Background—Obesity and diabetes mellitus are important metabolic risk factors and frequent comorbidities in heart failure with preserved ejection fraction. They contribute to myocardial diastolic dysfunction (DD) through collagen deposition or titin modification. The relative importance for myocardial DD of collagen deposition and titin modification was investigated in obese, diabetic ZSF1 rats after heart failure with preserved ejection fraction development at 20 weeks. Methods and Results—Four groups of rats (Wistar-Kyoto, n=11; lean ZSF1, n=11; obese ZSF1, n=11, and obese ZSF1 with high-fat diet, n=11) were followed up for 20 weeks with repeat metabolic, renal, and echocardiographic evaluations and hemodynamically assessed at euthanization. Myocardial collagen, collagen cross-linking, titin isoforms, and phosphorylation were also determined. Resting tension (Fpassive)–sarcomere length relations were obtained in small muscle strips before and after KCl–KI treatment, which unanchors titin and allows contributions of titin and extracellular matrix to Fpassive to be discerned. At 20 weeks, the lean ZSF1 group was hypertensive, whereas both obese ZSF1 groups were hypertensive and diabetic. Only the obese ZSF1 groups had developed heart failure with preserved ejection fraction, which was evident from increased lung weight, preserved left ventricular ejection fraction, and left ventricular DD. The underlying myocardial DD was obvious from high muscle strip stiffness, which was largely (±80%) attributable to titin hypophosphorylation. The latter occurred specifically at the S3991 site of the elastic N2Bus segment and at the S12884 site of the PEVK segment. Conclusions—Obese ZSF1 rats developed heart failure with preserved ejection fraction during a 20-week time span. Titin hypophosphorylation importantly contributed to the underlying myocardial DD.


Drug Discovery Today | 2012

Physiological, pathological and potential therapeutic roles of adipokines

Inês Falcão-Pires; Paulo Castro-Chaves; Daniela Miranda-Silva; André P. Lourenço; Adelino F. Leite-Moreira

Formerly regarded purely as passive energy storage, adipose tissue is now recognized as a vital endocrine organ. Adipocytes secrete diverse peptide hormones named adipokines, which act in a autocrine, paracrine or endocrine way to influence several biological functions. Adipokines comprise diverse bioactive substances, including cytokines, growth, and complement factors, which perform essential regulatory functions related to energy balance, satiety and immunity. Presently adipokines have been widely implicated in obesity, diabetes, hypertension and cardiovascular diseases. In this article we aim to present a brief description of the roles and potential therapeutic modulation of adipokines, such as leptin, resistin, adiponectin, apelin, visfatin, FABP-4, tumor necrosis factor-α (TNF-α), interleukin-6 and plasminogen activator inhibitor-1 (PAI-1).


European Journal of Heart Failure | 2014

Targeting myocardial remodelling to develop novel therapies for heart failure A position paper from the Working Group on Myocardial Function of the European Society of Cardiology

Guido Tarone; Jean-Luc Balligand; Johann Bauersachs; Angela Clerk; Leon J. De Windt; Stephane Heymans; Denise Hilfiker-Kleiner; Emilio Hirsch; Guido Iaccarino; Ralph Knöll; Adelino F. Leite-Moreira; André P. Lourenço; Manuel Mayr; Thomas Thum; Carlo G. Tocchetti

The failing heart is characterized by complex tissue remodelling involving increased cardiomyocyte death, and impairment of sarcomere function, metabolic activity, endothelial and vascular function, together with increased inflammation and interstitial fibrosis. For years, therapeutic approaches for heart failure (HF) relied on vasodilators and diuretics which relieve cardiac workload and HF symptoms. The introduction in the clinic of drugs interfering with beta‐adrenergic and angiotensin signalling have ameliorated survival by interfering with the intimate mechanism of cardiac compensation. Current therapy, though, still has a limited capacity to restore muscle function fully, and the development of novel therapeutic targets is still an important medical need. Recent progress in understanding the molecular basis of myocardial dysfunction in HF is paving the way for development of new treatments capable of restoring muscle function and targeting specific pathological subsets of LV dysfunction. These include potentiating cardiomyocyte contractility, increasing cardiomyocyte survival and adaptive hypertrophy, increasing oxygen and nutrition supply by sustaining vessel formation, and reducing ventricular stiffness by favourable extracellular matrix remodelling. Here, we consider drugs such as omecamtiv mecarbil, nitroxyl donors, cyclosporin A, SERCA2a (sarcoplasmic/endoplasmic Ca2 + ATPase 2a), neuregulin, and bromocriptine, all of which are currently in clinical trials as potential HF therapies, and discuss novel molecular targets with potential therapeutic impact that are in the pre‐clinical phases of investigation. Finally, we consider conceptual changes in basic science approaches to improve their translation into successful clinical applications.


Life Sciences | 2008

Attenuation of the cardiovascular and metabolic complications of obesity in CD14 knockout mice

Roberto Roncon-Albuquerque; Mónica Moreira-Rodrigues; Bernardo Faria; Andrea P. Ferreira; Cátia Cerqueira; André P. Lourenço; Manuel Pestana; Pedro von Hafe; Adelino F. Leite-Moreira

AIMS Although toll-like receptors (TLR) are known to mediate the metabolic complications of obesity, the mechanisms underlying its activation remain largely unknown. The present study analyzed a model of diet-induced obesity in mice lacking the TLR4/TLR2 co-receptor CD14. MAIN METHODS Six-week-old male mice lacking CD14 (n = 16) were allocated to either a control diet or a high-fat high-simple carbohydrate diet (5.4 kcal/g; 35% fat; 35% sucrose), and compared with C57BL/6 (WT; n = 15) controls. After 12 weeks, body composition, basal sympathetic activity, non-invasive blood pressure and glucose tolerance were evaluated. Hepatic and adipose tissues were collected for mRNA quantification, histology and LPS incubation. KEY FINDINGS In both WT and CD14 knockout mice, obesity was accompanied by TLR2 and TLR4 upregulation. However, obese mice lacking CD14 presented decreased lipid and macrophage content in hepatic and adipose tissues, lower urinary levels of noradrenaline, decreased systolic blood pressure, reduced fasting plasma glucose and blunted glucose intolerance, compared with obese WT group. In the presence of exogenous sCD14, adipose tissue incubation with LPS-induced TLR2 and TNF-alpha upregulation in both WT and CD14 knockout obese mice. SIGNIFICANCE In our model of diet-induced obesity, mice lacking CD14 showed lower adiposity and hepatic steatosis, improved glucose homeostasis, blunted sympathetic overactivity and reduced blood pressure elevation. This was observed in the presence of preserved TLR4 and TLR2 gene expression, and intact TLR4 signaling pathways. These results suggest that CD14-mediated TLR activation might contribute to the cardiovascular and metabolic complications of obesity.


International Journal of Cardiology | 2012

Current pathophysiological concepts and management of pulmonary hypertension

André P. Lourenço; Dulce Fontoura; Tiago Henriques-Coelho; Adelino F. Leite-Moreira

Pulmonary hypertension (PH), increasingly recognized as a major health burden, remains underdiagnosed due mainly to the unspecific symptoms. Pulmonary arterial hypertension (PAH) has been extensively investigated. Pathophysiological knowledge derives mostly from experimental models. Paradoxically, common non-PAH PH forms remain largely unexplored. Drugs targeting lung vascular tonus became available during the last two decades, notwithstanding the disease progresses in many patients. The aim of this review is to summarize recent advances in epidemiology, pathophysiology and management with particular focus on associated myocardial and systemic compromise and experimental therapeutic possibilities. PAH, currently viewed as a panvasculopathy, is due to a crosstalk between endothelial and smooth muscle cells, inflammatory activation and altered subcellular pathways. Cardiac cachexia and right ventricular compromise are fundamental determinants of PH prognosis. Combined vasodilator therapy is already mainstay for refractory cases, but drugs directed at these new pathophysiological pathways may constitute a significant advance.


Netherlands Heart Journal | 2016

Animal models of heart failure with preserved ejection fraction

Glória Conceição; I.H.A. Heinonen; André P. Lourenço; Dirk J. Duncker; Inês Falcão-Pires

Heart failure with preserved ejection fraction (HFpEF) constitutes a clinical syndrome in which the diagnostic criteria of heart failure are not accompanied by gross disturbances of systolic function, as assessed by ejection fraction. In turn, under most circumstances, diastolic function is impaired. Although it now represents over 50 % of all patients with heart failure, the mechanisms of HFpEF remain understood, precluding effective therapy. Understanding the pathophysiology of HFpEF has been restricted by both limited access to human myocardial biopsies and by the lack of animal models that fully mimic human pathology. Animal models are valuable research tools to clarify subcellular and molecular mechanisms under conditions where the comorbidities and other confounding factors can be precisely controlled. Although most of the heart failure animal models currently available represent heart failure with reduced ejection fraction, several HFpEF animal models have been proposed. However, few of these fulfil all the features present in human disease. In this review we will provide an overview of the currently available models to study HFpEF from rodents to large animals as well as present advantages and disadvantages of these models.


Molecular Ecology | 2017

Trapped within the city: Integrating demography, time since isolation and population‐specific traits to assess the genetic effects of urbanization

André P. Lourenço; David Álvarez; Ian J. Wang; Guillermo Velo-Antón

Urbanization is a severe form of habitat fragmentation that can cause many species to be locally extirpated and many others to become trapped and isolated within an urban matrix. The role of drift in reducing genetic diversity and increasing genetic differentiation is well recognized in urban populations. However, explicit incorporation and analysis of the demographic and temporal factors promoting drift in urban environments are poorly studied. Here, we genotyped 15 microsatellites in 320 fire salamanders from the historical city of Oviedo (Est. 8th century) to assess the effects of time since isolation, demographic history (historical effective population size; Ne) and patch size on genetic diversity, population structure and contemporary Ne. Our results indicate that urban populations of fire salamanders are highly differentiated, most likely due to the recent Ne declines, as calculated in coalescence analyses, concomitant with the urban development of Oviedo. However, urbanization only caused a small loss of genetic diversity. Regression modelling showed that patch size was positively associated with contemporary Ne, while we found only moderate support for the effects of demographic history when excluding populations with unresolved history. This highlights the interplay between different factors in determining current genetic diversity and structure. Overall, the results of our study on urban populations of fire salamanders provide some of the very first insights into the mechanisms affecting changes in genetic diversity and population differentiation via drift in urban environments, a crucial subject in a world where increasing urbanization is forecasted.


Drug Discovery Today | 2013

Pivotal role of microRNAs in cardiac physiology and heart failure.

André M. Leite-Moreira; André P. Lourenço; Inês Falcão-Pires; Adelino F. Leite-Moreira

Cardiac hypertrophy is a hallmark of heart failure (HF), a highly prevalent, debilitating and deadly condition in Western countries. Pronounced changes in molecular pathways governing cardiac physiology underlie hypertrophy and progression to HF. MicroRNAs, small nucleotide sequences that coordinate gene expression, may have a central role in orchestrating these changes since the hypertrophic and HF myocardium clearly shows disturbed microRNA profiles. Experimental interventions targeting miR disturbances have been shown beneficial in animal models of cardiac hypertrophy and HF. This short review discusses exciting potential diagnostic and therapeutic applications of microRNAs to cardiac hypertrophy and HF, highlighting the underlying molecular pathways.


Journal of Nutrition | 2011

A Western-Type Diet Attenuates Pulmonary Hypertension with Heart Failure and Cardiac Cachexia in Rats

André P. Lourenço; Francisco Vasques-Nóvoa; Dulce Fontoura; Carmen Brás-Silva; Roberto Roncon-Albuquerque; Adelino F. Leite-Moreira

Western-type diets (WD) constitute risk factors for disease but may have distinct effects in heart failure (HF) with cardiac cachexia (CC). We evaluated hemodynamic, metabolic, and inflammatory effects of short-term WD intake in pulmonary hypertension (PH) with CC. Male Wistar rats randomly received 60 mg · kg(-1) monocrotaline (M) or vehicle (C) and consumed either a 5.4-kcal · g(-1) WD (35% animal fat, 35% simple carbohydrate, 20% protein, 0.4% Na(+)) or a 2.9-kcal · g(-1) (3% vegetable fat, 60% complex carbohydrate, 16% protein, 0.25% Na(+)) normal diet (ND) for 5 wk. Mortality, energy intake, body weight (BW), metabolism, hemodynamics, histology, apoptosis, gene expression, transcription factors, and plasma cytokines were evaluated. Compared with the C-ND group, the M-ND group had PH, HF, and mortality that were significantly attenuated in M-WD. The extent of myocardial remodeling and apoptosis was higher in M-ND than in C-ND but lower in M-WD than in M-ND, while conversely, energy intake, BW, cholesterol, and TG plasma concentrations were lower in M-ND than in C-ND but higher in M-WD than in M-ND. M-ND had increased myocardial NF-κB transcription factor activity, endothelin-1, and cytokine overexpression and higher circulating cytokine concentrations than C-ND, which were lower in M-WD than in M-ND. PPARα activity, however, was lower in M-ND, but not in M-WD, compared with the respective C groups. WD attenuated PH and CC, ameliorating survival, myocardial function, metabolism, and inflammation, through transcription factor modulation, suggesting a beneficial role in CC.


Circulation-heart Failure | 2016

Distinct endothelial cell responses in the heart and kidney microvasculature characterize the progression of heart failure with preserved ejection fraction in the obese ZSF1 rat with cardiorenal metabolic syndrome

Christian G.M. van Dijk; Nynke R. Oosterhuis; Yan Juan Xu; Maarten M. Brandt; Walter J. Paulus; Loek van Heerebeek; Dirk J. Duncker; Marianne C. Verhaar; Dulce Fontoura; André P. Lourenço; Adelino F. Leite-Moreira; Inês Falcão-Pires; Jaap A. Joles; Caroline Cheng

Background—The combination of cardiac and renal disease driven by metabolic risk factors, referred to as cardiorenal metabolic syndrome (CRMS), is increasingly recognized as a critical pathological entity. The contribution of (micro)vascular injury to CRMS is considered to be substantial. However, mechanistic studies are hampered by lack of in vivo models that mimic the natural onset of the disease. Here, we evaluated the coronary and renal microvasculature during CRMS development in obese diabetic Zucker fatty/Spontaneously hypertensive heart failure F1 hybrid (ZSF1) rats. Methods and Results—Echocardiographic, urine, and blood evaluations were conducted in 3 groups (Wistar-Kyoto, lean ZSF1, and obese ZSF1) at 20 and 25 weeks of age. Immunohistological evaluation of renal and cardiac tissues was conducted at both time points. At 20 and 25 weeks, obese ZSF1 rats showed higher body weight, significant left ventricular hypertrophy, and impaired diastolic function compared with all other groups. Indices of systolic function did not differ between groups. Obese ZSF1 rats developed hyperproliferative vascular foci in the subendocardium, which lacked microvascular organization and were predilection sites of inflammation and fibrosis. In the kidney, obese ZSF1 animals showed regression of the peritubular and glomerular microvasculature, accompanied by tubulointerstitial damage, glomerulosclerosis, and proteinuria. Conclusions—The obese ZSF1 rat strain is a suitable in vivo model for CRMS, sharing characteristics with the human syndrome during the earliest onset of disease. In these rats, CRMS induces microvascular fibrotic responses in heart and kidneys, associated with functional impairment of both organs.

Collaboration


Dive into the André P. Lourenço's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge