Andre Pires-daSilva
University of Texas at Arlington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andre Pires-daSilva.
Nature | 2011
Miodrag Grbic; Thomas Van Leeuwen; Richard M. Clark; Stephane Rombauts; Pierre Rouzé; Vojislava Grbic; Edward J. Osborne; Wannes Dermauw; Phuong Cao Thi Ngoc; Félix Ortego; Pedro Hernández-Crespo; Isabel Diaz; M. Martinez; Maria Navajas; Elio Sucena; Sara Magalhães; Lisa M. Nagy; Ryan M. Pace; Sergej Djuranovic; Guy Smagghe; Masatoshi Iga; Olivier Christiaens; Jan A. Veenstra; John Ewer; Rodrigo Mancilla Villalobos; Jeffrey L. Hutter; Stephen D. Hudson; Marisela Vélez; Soojin V. Yi; Jia Zeng
The spider mite Tetranychus urticae is a cosmopolitan agricultural pest with an extensive host plant range and an extreme record of pesticide resistance. Here we present the completely sequenced and annotated spider mite genome, representing the first complete chelicerate genome. At 90 megabases T. urticae has the smallest sequenced arthropod genome. Compared with other arthropods, the spider mite genome shows unique changes in the hormonal environment and organization of the Hox complex, and also reveals evolutionary innovation of silk production. We find strong signatures of polyphagy and detoxification in gene families associated with feeding on different hosts and in new gene families acquired by lateral gene transfer. Deep transcriptome analysis of mites feeding on different plants shows how this pest responds to a changing host environment. The T. urticae genome thus offers new insights into arthropod evolution and plant–herbivore interactions, and provides unique opportunities for developing novel plant protection strategies.
Nature Reviews Genetics | 2003
Andre Pires-daSilva; Ralf J. Sommer
Despite the bewildering number of cell types and patterns found in the animal kingdom, only a few signalling pathways are required to generate them. Most cell–cell interactions during embryonic development involve the Hedgehog, Wnt, transforming growth factor-β, receptor tyrosine kinase, Notch, JAK/STAT and nuclear hormone pathways. Looking at how these pathways evolved might provide insights into how a few signalling pathways can generate so much cellular and morphological diversity during the development of individual organisms and the evolution of animal body plans.
Evolution & Development | 2001
Jagan Srinivasan; Andre Pires-daSilva; Arturo Gutierrez; Min Zheng; Hanh Witte; Isabel Schlak; Ralf J. Sommer
SUMMARY To identify the mechanisms by which molecular variation is introduced into developmental systems, microevolutionary approaches to evolutionary developmental biology have to be taken. Here, we describe the molecular and developmental characterization of laboratory strains of the nematode genus Pristionchus, which lays a foundation for a microevolutionary analysis of vulva development. We describe 13 laboratory strains of the Pristionchus genus that are derived from natural isolates from around the world. Mating experiments and ITS sequence analysis indicated that these 13 strains represent four different species: the gonochoristic species P. lheritieri and three hermaphroditic species, P. pacificus, P. maupasi, and an as yet undescribed species Pristionchus sp., respectively. P. pacificus is represented by five different strains isolated from California, Washington, Hawaii, Ontario, and Poland. Developmental differences during vulva formation are observed between strains from different species but also between strains of P. pacificus, like the strains from California and Poland. In particular, redundant developmental mechanisms present during vulva formation in P. pacificus var. California are absent in other strains. Amplified restriction fragment length polymorphism (AFLP) analyses of the P. pacificus strains revealed that the American strains are highly polymorphic. In contrast, the developmentally distinct strain from Poland is identical to the Californian strain, suggesting that the developmental differences rely on a small number of changes in developmental control genes rather than the accumulation of changes at multiple loci.
Current Biology | 2011
Jyotiska Chaudhuri; Vikas Kache; Andre Pires-daSilva
The mechanisms by which new modes of reproduction evolve remain important unsolved puzzles in evolutionary biology. Nematode worms are ideal for studying the evolution of mating systems because the phylum includes both a large range of reproductive modes and large numbers of evolutionarily independent switches [1, 2]. Rhabditis sp. SB347, a nematode with sexual polymorphism, produces males, females, and hermaphrodites [3]. To understand how the transition between mating systems occurs, we characterized the mechanisms that regulate female versus hermaphrodite fate in Rhabditis sp. SB347. Hermaphrodites develop through an obligatory nonfeeding juvenile stage, the dauer larva. Here we show that by suppressing dauer formation, Rhabditis sp. SB347 develops into females. Conversely, larvae that under optimal growth conditions develop into females can be respecified toward hermaphroditic development if submitted to dauer-inducing conditions. These results are of significance to understanding the evolution of complex mating systems present in parasitic nematodes.
PLOS ONE | 2010
Jesse M. Meik; A. Michelle Lawing; Andre Pires-daSilva
Background Speckled rattlesnakes (Crotalus mitchellii) inhabit multiple islands off the coast of Baja California, Mexico. Two of the 14 known insular populations have been recognized as subspecies based primarily on body size divergence from putative mainland ancestral populations; however, a survey of body size variation from other islands occupied by these snakes has not been previously reported. We examined body size variation between island and mainland speckled rattlesnakes, and the relationship between body size and various island physical variables among 12 island populations. We also examined relative head size among giant, dwarfed, and mainland speckled rattlesnakes to determine whether allometric differences conformed to predictions of gape size (and indirectly body size) evolving in response to shifts in prey size. Methodology/Principal Findings Insular speckled rattlesnakes show considerable variation in body size when compared to mainland source subspecies. In addition to previously known instances of gigantism on Ángel de la Guarda and dwarfism on El Muerto, various degrees of body size decrease have occurred frequently in this taxon, with dwarfed rattlesnakes occurring mostly on small, recently isolated, land-bridge islands. Regression models using the Akaike information criterion (AIC) showed that mean SVL of insular populations was most strongly correlated with island area, suggesting the influence of selection for different body size optima for islands of different size. Allometric differences in head size of giant and dwarf rattlesnakes revealed patterns consistent with shifts to larger and smaller prey, respectively. Conclusions/Significance Our data provide the first example of a clear relationship between body size and island area in a squamate reptile species; among vertebrates this pattern has been previously documented in few insular mammals. This finding suggests that selection for body size is influenced by changes in community dynamics that are related to graded differences in area over what are otherwise similar bioclimatic conditions. We hypothesize that in this system shifts to larger prey, episodic saturation and depression of primary prey density, and predator release may have led to insular gigantism, and that shifts to smaller prey and increased reproductive efficiency in the presence of intense intraspecific competition may have led to insular dwarfism.
BMC Evolutionary Biology | 2009
Arielle Click; Chandni H Savaliya; Simone Kienle; Matthias Herrmann; Andre Pires-daSilva
BackgroundEvolution of selfing can be associated with an increase in fixation of deleterious mutations, which in certain conditions can lead to species extinction. In nematodes, a few species evolved self-fertilization independently, making them excellent model systems to study the evolutionary consequences of this type of mating system.ResultsHere we determine various parameters that influence outcrossing in the hermaphroditic nematode Pristionchus pacificus and compare them to the better known Caenorhabditis elegans. These nematode species are distinct in terms of genetic diversity, which could be explained by differences in outcrossing rates. We find that, similarly to C. elegans, P. pacificus males are generated at low frequencies from self-fertilizing hermaphrodites and are relatively poor mating partners. Furthermore, crosses between different isolates reveal that hybrids have lower brood sizes than the pure strains, which is a sign of outbreeding depression. In contrast to C. elegans, P. pacificus has lower brood sizes and the male X-bearing sperm is able to outcompete the X-nullo sperm.ConclusionThe results indicate that there is no evidence of any selection acting very strongly on P. pacificus males.
Scientific Reports | 2016
Jyotiska Chaudhuri; Neelanjan Bose; Sophie Tandonnet; Sally Adams; Giusy Zuco; Vikas Kache; Manish Parihar; Stephan H. von Reuss; Frank C. Schroeder; Andre Pires-daSilva
Nematodes have diverse reproductive strategies, which make them ideal subjects for comparative studies to address how mating systems evolve. Here we present the sex ratios and mating dynamics of the free-living nematode Rhabditis sp. SB347, in which males, females and hermaphrodites co-exist. The three sexes are produced by both selfing and outcrossing, and females tend to appear early in a mother’s progeny. Males prefer mating with females over hermaphrodites, which our results suggest is related to the female-specific production of the sex pheromones ascr#1 and ascr#9. We discuss the parallels between this system and that of parasitic nematodes that exhibit alternation between uniparental and biparental reproduction.
EMBO Reports | 2006
Sara Carvalho; Antoine Barrière; Andre Pires-daSilva
The European Molecular Biology Organization workshop on the Study of Evolutionary Biology with Caenorhabditis elegans and Closely Related Species was held at the Instituto Gulbenkian de Ciencia, Oeiras, Portugal, from 23 to 26 May 2006. The meeting was organized by H. Teotonio, M.‐A. Felix, R. Azevedo and P. Phillips. ![][1] Many aspects of Caenorhabditis elegans biology are known in exquisite detail: all somatic cell divisions that occur from zygote to adult have been described, the synaptic connections made by all neurons have been reconstructed, the entire genome has been sequenced and the function of most predicted genes has been tested by forward‐genetic screens, targeted gene‐specific deletions, RNA interference or a combination of these techniques. However, less is known about the evolutionary processes that shaped the genome and the biology of this worm (Fitch, 2005). To close this knowledge gap, an exciting workshop sponsored by the European Molecular Biology Organization and the Gulbenkian Foundation brought together a diverse group of about 50 investigators, whose common interest was the evolution of C. elegans and its closely related species. According to the organizers, this meeting aimed to establish a network of researchers to discuss guidelines, common resources and goals for the near future. This report highlights some of the questions and recent discoveries discussed at the workshop. Some life‐history traits of C. elegans are atypical, even for a nematode. For instance, it is one of the few nematode species that is able both to self‐fertilize and to outcross with males. Self‐fertilization produces hermaphrodites and rare spontaneous males, whereas cross‐fertilization produces equal proportions of both sexes. Although this ability comes at the price of inbreeding, one possible adaptive advantage is reproductive assurance: hermaphrodites can produce offspring in a new habitat independent of a mating partner. A second asset is the rate of reproduction: all hermaphrodite … [1]: /embed/graphic-1.gif
Scientific Reports | 2017
Natsumi Kanzaki; Karin Kiontke; Ryusei Tanaka; Yuuri Hirooka; Anna Schwarz; Thomas Müller-Reichert; Jyotiska Chaudhuri; Andre Pires-daSilva
The co-existence of males, females and hermaphrodites, a rare mating system known as trioecy, has been considered as an evolutionarily transient state. In nematodes, androdioecy (males/hermaphrodites) as found in Caenorhabditis elegans, is thought to have evolved from dioecy (males/females) through a trioecious intermediate. Thus, trioecious species are good models to understand the steps and requirements for the evolution of new mating systems. Here we describe two new species of nematodes with trioecy, Auanema rhodensis and A. freiburgensis. Along with molecular barcodes, we provide a detailed analysis of the morphology of these species, and document it with drawings and light and SEM micrographs. Based on morphological data, these free-living nematodes were assigned to a new genus, Auanema, together with three other species described previously. Auanema species display convergent evolution in some features with parasitic nematodes with complex life cycles, such as the production of few males after outcrossing and the obligatory development of dauers into self-propagating adults.
BMC Evolutionary Biology | 2009
Jesse M. Meik; Andre Pires-daSilva
BackgroundThe rattlesnake rattling system is an evolutionary novelty that includes anatomical, behavioral, and physiological modifications of the generalized pitviper tail. One such modification, the formation of a bony clublike style at the terminal region of the caudal vertebrae, has not previously been examined in a phylogenetic context. Here we used skeletal material, cleared and stained preparations, and radiographs of whole preserved specimens to examine interspecific variation in style morphology among 34 rattlesnake species.ResultsEvolutionary Principal Components Analysis revealed an inverse relationship between caudal segmental counts and style size, supporting the hypothesis that bone from caudal vertebral elements was reallocated to style formation during the evolution of this structure. Most of the basal rattlesnake species have small styles consisting of few compacted vertebral elements; however, early in the rattlesnake radiation there appears to have been two independent transitions to relatively large, pronged styles consisting of multiple coalesced vertebrae (once in Sistrurus catenatus, and once in Crotalus following the divergence of the Mexican long-tailed rattlesnakes). In terms of style shape, the two most divergent species, C. catalinensis and C. ericsmithi, provide insight into the possible relationship between style and rattle matrix morphology and lineage-specific evolutionary strategies for retaining rattle segments.ConclusionThe considerable interspecific variation in rattle morphology appears to correspond to variation in the bony style. We hypothesize that style morphology evolves indirectly as an integrated module responding to adaptive evolution on matrix morphology.