André R. Niemeijer
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by André R. Niemeijer.
Nature | 2009
Cristiano Collettini; André R. Niemeijer; Cecilia Viti; Chris Marone
Geological and geophysical evidence suggests that some crustal faults are weak compared to laboratory measurements of frictional strength. Explanations for fault weakness include the presence of weak minerals, high fluid pressures within the fault core and dynamic processes such as normal stress reduction, acoustic fluidization or extreme weakening at high slip velocity. Dynamic weakening mechanisms can explain some observations; however, creep and aseismic slip are thought to occur on weak faults, and quasi-static weakening mechanisms are required to initiate frictional slip on mis-oriented faults, at high angles to the tectonic stress field. Moreover, the maintenance of high fluid pressures requires specialized conditions and weak mineral phases are not present in sufficient abundance to satisfy weak fault models, so weak faults remain largely unexplained. Here we provide laboratory evidence for a brittle, frictional weakening mechanism based on common fault zone fabrics. We report on the frictional strength of intact fault rocks sheared in their in situ geometry. Samples with well-developed foliation are extremely weak compared to their powdered equivalents. Micro- and nano-structural studies show that frictional sliding occurs along very fine-grained foliations composed of phyllosilicates (talc and smectite). When the same rocks are powdered, frictional strength is high, consistent with cataclastic processes. Our data show that fault weakness can occur in cases where weak mineral phases constitute only a small percentage of the total fault rock and that low friction results from slip on a network of weak phyllosilicate-rich surfaces that define the rock fabric. The widespread documentation of foliated fault rocks along mature faults in different tectonic settings and from many different protoliths suggests that this mechanism could be a viable explanation for fault weakening in the brittle crust.
Earth and Planetary Science Letters | 2002
André R. Niemeijer; Christopher J. Spiers; Bart Bos
Intergranular pressure solution (IPS) is an important compaction and deformation mechanism in quartzose rocks, but the kinetics and rate-controlling process remain unclear. The aim of the present study is to test microphysical models for compaction creep by IPS against isostatic hot pressing experiments performed on quartz sand under conditions expected to favor pressure solution (confining pressure 300 MPa, pore water pressure 150–250 MPa, temperature 400–600°C). Microstructural observations revealed widespread intergranular indentation features and confirmed that intergranular pressure solution was indeed the dominant deformation mechanism under the chosen conditions. For porosities down to 15%, the mechanical data agree satisfactorily with a microphysical model incorporating a previously determined kinetic law for dissolution of loose granular quartz, suggesting that the rate-limiting mechanism of IPS was dissolution. The model also predicts IPS rates within one order of magnitude of those measured in previous experiments at 150–350°C, and thus seem robust enough to model sandstone compaction in nature. Such applications may not be straightforward, however, as the present evidence for dissolution control implies that the compositional variability of natural pore fluids may strongly influence IPS rates in sandstones.
Geological Society, London, Special Publications | 2005
André R. Niemeijer; Christopher J. Spiers
Abstract Despite the fact that phyllosilicates are ubiquitous in mature fault and shear zones, little is known about the strength of phyllosilicate-bearing fault rocks under brittle-ductile transitional conditions where cataclasis and solution-transfer processes are active. In this study we explored steady-state strength behaviour of a simulated fault rock, consisting of muscovite and halite, using brine as pore fluid. Samples were deformed in a rotary shear apparatus under conditions where cataclasis and solution transfer are known to dominate the deformation behaviour of the halite. It was found that the steady-state strength of these mixtures is dependent on normal stress and sliding velocity. At low velocities (<0.5 µm s−1) the strength increases with velocity and normal stress, and a strong foliation develops. Comparison with previous microphysical models shows that this is a result of the serial operation of pressure solution in the halite grains accommodating frictional sliding over the phyllosilicate foliation. At high velocities (>1 µm s−1), velocity-weakening frictional behaviour occurs along with the development of a structureless cataclastic microstructure. Revision of previous models for the low-velocity behaviour results in a physically realistic description that fits our data well. This is extended to include the possibility of plastic flow in the phyllosilicates and applied to predict steady-state strength profiles for continental fault zones containing foliated quartz-mica fault rocks. The results predict a significant reduction of strength at mid-crustal depths and may have important implications for crustal dynamics and seismogenesis.
Journal of Geophysical Research | 2011
Jean E. Elkhoury; André R. Niemeijer; Emily E. Brodsky; Chris Marone
Received 5 June 2010; revised 5 November 2010; accepted 22 December 2010; published 24 February 2011. [1] We report on laboratory experiments designed to investigate the influence of pore pressure oscillations on the effective permeability of fractured rock. Berea sandstone samples were fractured in situ under triaxial stresses of tens of megapascals, and deionized water was forced through the incipient fracture under conditions of steady and oscillating pore pressure. We find that short‐term pore pressure oscillations induce long‐term transient increases in effective permeability of the fractured samples. The magnitude of the effective permeability enhancements scales with the amplitude of pore pressure oscillations, and changes persist well after the stress perturbation. The maximum value of effective permeability enhancement is 5 × 10 −16 m 2 with a background permeability of 1 × 10 −15 m 2 ; that is, the maximum enhanced permeability is 1.5 × 10 −15 m 2 . We evaluate poroelastic effects and show that hydraulic storage release does not explain our observations. Effective permeability recovery following dynamic oscillations occurs as the inverse square root of time. The recovery indicates that a reversible mechanism, such as clogging/unclogging of fractures, as opposed to an irreversible one, like microfracturing, is responsible for the transient effective permeability increase. Our work suggests the feasibility of dynamically controlling the effective permeability of fractured systems. The result has consequences for models of earthquake triggering and permeability enhancement in fault zones due to dynamic shaking from near and distant earthquakes.
Geology | 2013
Berend A. Verberne; Johannes H.P. de Bresser; André R. Niemeijer; Christopher J. Spiers; D. A. Matthijs de Winter; Oliver Plümper
A central aim in fault mechanics is to understand the microphysical mechanisms controlling aseismic-seismic transitions in fault gouges, and to identify microstructural indicators for such transitions. We present new data on the slip stability of calcite fault gouges, and on microstructural development down to the nanometer scale. Our experiments consisted of direct shear tests performed dry at slip rates of 0.1–10 μm/s, at a constant normal stress of 50 MPa, at 18–150 °C. The results show a transition from stable to (potentially) unstable slip above ~80 °C. All samples recovered showed an optical microstructure characterized by narrow, 30–40-μm-wide, Riedel and boundary shear bands marked by extreme grain comminution, and a crystallographic preferred orientation (CPO). Boundary shear bands, sectioned using FIB-SEM (focused ion beam scanning electron microscopy), revealed angular grain fragments decreasing from 10 to 20 μm at the outer margins to ~0.3 μm in the shear band core, where dense aggregates of nanograins also occurred. Transmission electron microscopy, applied to foils extracted from boundary shears using FIB-SEM, combined with the optical CPO, showed that these aggregates consist of calcite nanocrystals, 5–20 nm in size, with the (104)[201] dislocation glide system oriented parallel to the shear plane and direction. Our results suggest that the mechanisms controlling slip include cataclasis and localized crystal plasticity. Because crystal plasticity is strongly thermally activated, we infer that the transition to velocity-weakening slip is likely due to enhanced crystal plasticity at >80 °C. This implies that tectonically active limestone terrains will tend to be particularly prone to shallow-focus seismicity.
Journal of Geophysical Research | 2006
A. Revil; Paul Leroy; Ahmad Ghorbani; Nicolas Florsch; André R. Niemeijer
Stressed water-infiltrated silica rocks may deform by pervasive pressure solution transfer (PPST), which involves dissolution of the grain-to-grain contacts, transport by diffusion of the solute, and precipitation on the free surfaces of the grains. A fundamental question regarding this process is how to model rheological behavior at stresses and temperatures typical of the crust of the Earth. A Voigt-type poroviscoplastic model is modified by using a Cole-Cole distribution of relaxation times rather than a Dirac distribution used previously. The motivation of this choice is to account for the distribution of the grain size in the compaction of the porous aggregate assuming that this distribution obeys approximately a log normal distribution. This grain size distribution depends upon the initial grain size distribution and cataclasis in the early stage of compaction. We compared this modified viscoplastic model with the full set of experimental data obtained in various conditions of mean grain size, effective stress, and temperature by Niemeijer et al. (2002). These data provide tests of all aspects of the model, which can be considered to have no free parameters. We show the experiments of Niemeijer et al. (2002) on PPST are primarily diffusion-limited. The grain size distributions observed for three samples imply that the distribution of the relaxation time covers 5 orders of magnitude in grain size.
Nature | 2017
Rupert Sutherland; John Townend; Virginia G. Toy; Phaedra Upton; Jamie Coussens; Michael F. Allen; Laura May Baratin; Nicolas Barth; Leeza Becroft; C. M. Boese; Austin Boles; Carolyn Boulton; Neil G. R. Broderick; Lucie Janku-Capova; Brett M. Carpenter; Bernard Célérier; Calum J. Chamberlain; Alan Cooper; Ashley Coutts; Simon J. Cox; Lisa Craw; Mai-Linh Doan; Jennifer Eccles; D. R. Faulkner; Jason Grieve; Julia Grochowski; Anton Gulley; Arthur Hartog; Jamie Howarth; Katrina Jacobs
Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At temperatures above 300–450 degrees Celsius, usually found at depths greater than 10–15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional–mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels and an average geothermal gradient of 125 ± 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.
Geology | 2013
Matt J. Ikari; André R. Niemeijer; Christopher J. Spiers; Achim J Kopf; Demian M. Saffer
Seismicity patterns offshore Costa Rica (Central America) at the Middle America Trench have led to speculation that large (moment magnitude, M w ∼7.0) earthquakes are associated with subducting topographic highs. In areas of high basement topography, a regionally extensive nannofossil chalk unit is exposed at the seafloor on the incoming plate, whereas in regions of low basement topography, hemipelagic clay-rich sediment is exposed. Because the entire sediment section is subducted at this margin, lithologic variation in the uppermost subducting sediments may control plate boundary fault behavior. Our laboratory experiments reveal that the chalk is frictionally strong (µ = 0.71–0.88) and characterized by velocity-weakening and stick-slip behavior, notably at elevated temperature. In contrast, the hemipelagic sediment is weak (µ = 0.22–0.35) and in many cases velocity strengthening. We suggest that the presence of frictionally unstable carbonates at bathymetric highs may play a key, previously unrecognized, role in governing earthquake nucleation.
Journal of Geophysical Research | 2009
Igor Faoro; André R. Niemeijer; Chris Marone; Derek Elsworth
[1] The evolution of permeability in fractured rock as a function of effective normal stress, shear displacement, and damage remains a complex issue. In this contribution, we report on experiments in which rock surfaces were subject to direct shear under controlled pore pressure and true triaxial stress conditions while permeability was monitored continuously via flow parallel to the shear direction. Shear tests were performed in a pressure vessel under drained conditions on samples of novaculite (Arkansas) and diorite (Coso geothermal field, California). The sample pairs were sheared to 18 mm of total displacement at 5 mm/s at room temperature and at effective normal stresses on the shear plane ranging from 5 to 20 MPa. Permeability evolution was measured throughout shearing via flow of distilled water from an upstream reservoir discharging downstream of the sample at atmospheric pressure. For diorite and novaculite, initial (preshear) fracture permeability is 0.5–1 � 10 � 14 m 2 and largely independent of the applied effective normal stresses. These permeabilities correspond to equivalent hydraulic apertures of 15–20 mm. Because of the progressive formation of gouge during shear, the postshear permeability of the diorite fracture drops to a final steady value of 0.5 � 10 � 17 m 2 . The behavior is similar in novaculite but the final permeability of 0.5 � 10 � 16 m 2 is obtained only at an effective normal stress of 20 MPa.
Geology | 2016
Lu Yao; Shengli Ma; John D. Platt; André R. Niemeijer
We study the important role of temperature rise in the dynamic weakening of fault gouge at seismic slip rates by using host blocks composed of brass, stainless steel, titanium alloy, and gabbro with thermal conductivities (λh) of 123, 15, 5.8, and 3.25 W/m/K, respectively. Our experiments are performed mostly on fault gouge collected from the Longmenshan fault, Sichuan, China, consisting primarily of illite and quartz. High-velocity weakening of gouge becomes more pronounced as λh decreases because the temperature in the gouge increases. Microstructure observations reveal welded slip-zone material and more compact slip surfaces for the gouge deformed with low-λh host blocks, which is probably caused by a sintering process indicative of higher temperatures. These conclusions are supported by temperature calculation performed using the finite-element method. The observed differences in frictional behaviors, deformation microstructures, and calculated temperature demonstrate that temperature rise driven by frictional heating is essential in causing dynamic weakening of gouge at seismic velocities. We show that our data are in good agreement with the flash-heating model, though thermochemical pressurization may also be important. Some of our experiments, where nanoparticles are present but show negligible weakening, demonstrate that the presence of nanoparticles alone is not sufficient to cause dynamic weakening of faults.