Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andre S. Ellis is active.

Publication


Featured researches published by Andre S. Ellis.


Science of The Total Environment | 2009

Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China

Xianjun Xie; Andre S. Ellis; Yanxin Wang; Zuoming Xie; Mengyu Duan; Chunli Su

High arsenic groundwater in the Quaternary aquifers of Datong Basin, northern China contain As up to 1820 microg/L and the high concentration plume is located in the slow flowing central parts of the basin. In this study we used hydrochemical data and sulfur isotope ratios of sulfate to better understand the conditions that are likely to control arsenic mobilization. Groundwater and spring samples were collected along two flow paths from the west and east margins of the basin and a third set along the basin flow path. Arsenic concentrations range from 68 to 670 microg/L in the basin and from 3.1 to 44 microg/L in the western and eastern margins. The margins have relatively oxidized waters with low contents of arsenic, relatively high proportions of As(V) among As species, and high contents of sulfate and uranium. By contrast, the central parts of the basin are reducing with high contents of arsenic in groundwater, commonly with high proportions of As(III) among As species, and low contents of sulfate and uranium. No statistical correlations were observed between arsenic and Eh, sulfate, Fe, Mn, Mo and U. While the mobility of sulfate, uranium and molybdenum is possibly controlled by the change in redox conditions as the groundwater flows towards central parts of the basin, the reducing conditions alone cannot account for the occurrence of high arsenic groundwater in the basin but it does explain the characteristics of arsenic speciation. With one exception, all the groundwaters with As(III) as the major As species have low Eh and those with As(V) have high Eh. Reductive dissolution of Fe-oxyhydroxides or reduction of As(V) are consistent with the observations, however no increase in dissolved Fe concentration was noted. Furthermore, water from the well with the highest arsenic was relatively oxidizing and contained mostly As(V). From previous work Fe-oxyhydroxides are speculated to exist as coatings rather than primary minerals. The wide range of delta(34)S([SO4]) values (from -2.5 to +36.1 per thousand) in the basin relative to the margins (from +8 per thousand to +15 per thousand) indicate that sulfur is undergoing redox cycling. The highly enriched values point to sulfate reduction that was probably mediated by bacteria. The presence of monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) is also evidence of microbial reactions. The depleted signatures indicate that some oxidation of depleted sulfide occurred in the basin. It must be noted that the samples with depleted sulfur isotope values have very low sulfate concentrations and therefore even a small amount of sulfide oxidation will bias the ratio. No significant correlation was observed between delta(34)S([SO4]) values and total arsenic contents when all the samples were considered. However, the wells in the central basin do appear to become enriched in delta(34)S([SO4]) as arsenic concentration increases. Although there is evidence for sulfate reduction, it is clear that sulfate reduction does not co-precipitate or sequester arsenic. The one sample with high arsenic that is oxidizing cannot be explained by oxidation of pyrite and is likely an indication that there are multiple redox zones that control arsenic speciation but not necessarily its mobilization and contradict the possibility that Fe-oxyhydroxides sorb appreciable amounts of arsenic in this study area. It is evident that this basin like other two young sedimentary basins (Huhhot and Hetao in Inner Mongolia) of northern China with high arsenic groundwater is transporting arsenic at a very slow rate. The data are consistent with the possibility that the traditional models of arsenic mobilization, namely reductive dissolution of Fe-oxyhydroxides, reduction of As(V) to more mobile As(III), and bacteria mediated reactions, are active to varying degrees. It is also likely that different processes control arsenic mobilization at different locations of the basin and more detailed studies along major flow paths upgradient of the high arsenic aquifers will shed more light on the mechanisms.


Chemical Geology | 2003

Stable isotope fractionation of selenium by natural microbial consortia

Andre S. Ellis; Thomas M. Johnson; Mitchell J. Herbel; Thomas D. Bullen

The mobility and bioavailability of Se depend on its redox state, and reduction of Se oxyanions to less mobile, reduced species controls transport of this potentially toxic element in the environment. Stable isotope fractionation of Se is currently being developed as an indicator of Se immobilization through reduction. In this study, Se isotope fractionation resulting from reduction of Se(VI) and Se(IV) oxyanions by natural microbial consortia was measured in sediment slurry experiments under nearly natural conditions, with no substrate added. Experiments were conducted with a wide range of initial Se concentrations and with sediment and water from three locations with contrasting environmental settings. The products of Se(VI) and Se(IV) reduction were enriched in the lighter isotopes relative to the reactants. Shifts of −2.6‰ to −3.1‰ and −5.5‰ to −5.7‰, respectively, were observed in the 80Se/76Se ratio. These isotopic fractionations did not depend significantly on initial Se concentrations, which were varied from 22 μg/l to 8 mg/l, or on geochemical differences among the sediments. These results provide estimates of Se isotope fractionation in organic-rich wetland environments but may not be appropriate for substrate-poor aquifers and marine sediments.


Chemosphere | 2013

Mobilization of arsenic in aquifers from the Datong Basin, China: Evidence from geochemical and iron isotopic data

Xianjun Xie; Thomas M. Johnson; Yanxin Wang; Craig C. Lundstrom; Andre S. Ellis; Xiangli Wang; Mengyu Duan

Iron isotope compositions of various Fe pools in aquifer sediments were measured at a known As-contaminated site in the Datong Basin, China. The δ(56)Fe values of HCl-extracted poor-crystalline Fe(III) range widely from -0.41‰ to 0.36‰. We interpret the low Fe(II)/Fe(Extractable) ratios (<50%) and the negative correlation between Fe(II)/Fe(Extractable) and δ(56)Fe values in HCl-extracted poor-crystalline Fe to be best explained by redox cycling of Fe induced by microbial Fe(III) reduction. However, the high Fe(II)/Fe(Extractable) ratios (~/>70%) and positive correlation between Fe(II)/Fe(Extractable) and δ(56)Fe values for HCl-extracted poor-crystalline Fe indicates production of sulfides (FeSs). The δ(56)Fe values of crystalline Fe(III) extracted by reductant appears to be comparatively small varying from -0.01‰ to 0.24‰, which is consistent with the δ(56)Fe values for ferric oxides/hydroxides having undergone microbial Fe(III) reduction. The Fe isotope composition of various Fe pools shows the transformation between crystalline Fe(III) and poor-crystalline crystalline Fe(III) and the secondary Fe(II) phases has already occurred or is occurring in aquifer sediments. More importantly, there is a significant difference in the As concentrations in crystalline Fe(III) oxides/hydroxides and HCl-extracted Fe phases. The concentrations of As range from 1.6 to 29.9 mg kg(-1) and from 0.6 to 3.0 mg kg(-1), for crystalline Fe(III) and HCl-extracted Fe phases respectively. Accordingly, the transformation of Fe minerals induced by microbial Fe(III) reduction can contribute to the mobilization of As. This study is the first to examine the Fe isotope compositions in high As aquifer sediments; the results show that the Fe isotope would be an important tool in demonstrating the enrichment of As in groundwater.


Environmental Earth Sciences | 2013

Geochemical indicators of interbasin groundwater flow within the southern Rio Grande Valley, southwestern USA

Andre S. Ellis

Increased groundwater withdrawals for the growing population in the Rio Grande Valley and likely alteration of recharge to local aquifers with climate change necessitates an understanding of the groundwater connection between the Jornada del Muerto Basin and the adjoining and more heavily used aquifer in the Mesilla Basin. Separating the Jornada and Mesilla aquifers is a buried bedrock high from Tertiary intrusions. This bedrock high or divide restricts and/or retards interbasin flow from the Jornada aquifer into the Mesilla aquifer. The potentiometric surface of the southern Jornada aquifer near part of the bedrock high indicates a flow direction away from the divide because of a previously identified damming effect, but a groundwater outlet from the southern Jornada aquifer is necessary to balance inputs from the overall Jornada aquifer. Differences in geochemical constituents (major ions, δD, δ18O, δ34S, and 87Sr/86Sr) indicate a deeper connection between the two aquifers through the Tertiary intrusions where Jornada water is geochemically altered because of a geothermal influence. Jornada groundwater likely is migrating through the bedrock high in deeper pathways formed by faults of the Jornada Fault Zone, in addition to Jornada water that overtops the bedrock high as previously identified as the only connection between the two aquifers. Increased groundwater withdrawals and lowering of the potentiometric surface of the Jornada aquifer may alter this contribution ratio with less overtopping of the bedrock high and a continued deeper flowpath contribution that could potentially increase salinity values in the Mesilla Basin near the divide.


Environmental Science & Technology | 2014

Laboratory Investigations of Weathering of Soils from Mammoth Mountain, CA, a Naturally CO2-Impacted Field Site

Helen Sanchez; Gustavo Menezes; Andre S. Ellis; Claudia Espinosa-Villegas; Crist S. Khachikian

The potential impacts of CO2 leakage from a natural subsurface reservoir on soil and water quality were studied. Field measurements of soil pore CO2 concentrations and visual inspection of plants at Mammoth Mountain, CA, allowed the demarcation of tree-kill and non-tree-kill zones, with CO2 concentrations >100,000 ppm and ∼ 1,000 ppm, respectively. Soils collected from six sites along a transect stretching from the center of the tree-kill zone to an equidistant point into the non-tree-kill zone were analyzed for surface area and organic carbon content. Batch and column leaching tests were conducted to determine the extent of weathering induced by the presence of CO2 in the aqueous solution. Soils deep into the tree-kill area exhibited significantly higher surface areas (10.67 m(2)/g vs 2.53 m(2)/g) and lower organic carbon content (9,550 mg/kg vs 35,550 mg/kg). Batch results indicated that lower pH values (∼ 2) released higher concentrations of Mg, Si, Fe, and As, while, for soils in the tree-kill zone, longer-term batch results indicated higher releases at the higher pH of 5.5. Column experiments were used to compare the effects of pH adjusted using HCl vs CO2. For pore volumes (PV) < 100, CO2 enhanced trace element release. For 100 < PV < 10,000 concentrations of elements in the two systems were equivalent and steady. At PV > 10,000, after a drop in pH in the CO2 system, larger amounts of Fe and As were released, suggesting a CO2-induced dissolution of Fe-silicates/clays and/or reductive dissolution of Fe(3+) that releases Fe-bound arsenic. The specific role of pore water-dissolved CO2 on the release of trace elements is hitherto unknown. However, interactions of pore-water CO2 and the minerals in the Mammoth Mountain soils can cause the release of environmental pollutants.


Science | 2002

Chromium Isotopes and the Fate of Hexavalent Chromium in the Environment

Andre S. Ellis; Thomas M. Johnson; Thomas D. Bullen


Geochimica et Cosmochimica Acta | 2009

Chemical weathering in the Three Rivers region of Eastern Tibet.

Hyonjeong Noh; Youngsook Huh; Jianhua Qin; Andre S. Ellis


Geochimica et Cosmochimica Acta | 2015

Equilibrium isotopic fractionation and isotopic exchange kinetics between Cr(III) and Cr(VI)

Xiangli Wang; Thomas M. Johnson; Andre S. Ellis


Journal of Hydrology | 2013

Delineation of groundwater flow paths using hydrochemical and strontium isotope composition: A case study in high arsenic aquifer systems of the Datong basin, northern China

Xianjun Xie; Yanxin Wang; Andre S. Ellis; Chunli Su; Junxia Li; Mengdi Li; Mengyu Duan


Journal of Hydrology | 2013

Multiple isotope (O, S and C) approach elucidates the enrichment of arsenic in the groundwater from the Datong Basin, northern China

Xianjun Xie; Yanxin Wang; Andre S. Ellis; Junxia Li; Chunli Su; Mengyu Duan

Collaboration


Dive into the Andre S. Ellis's collaboration.

Top Co-Authors

Avatar

Xianjun Xie

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar

Yanxin Wang

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar

Thomas D. Bullen

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Junxia Li

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar

Mengyu Duan

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chunli Su

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeff B. Langman

University of Texas at El Paso

View shared research outputs
Top Co-Authors

Avatar

Mengdi Li

China University of Geosciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge