Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where André Schneider is active.

Publication


Featured researches published by André Schneider.


Journal of Clinical Investigation | 2003

Luminal NaCl delivery regulates basolateral PGE2 release from macula densa cells.

Janos Peti-Peterdi; Peter Komlosi; Amanda L. Fuson; Youfei Guan; André Schneider; Zhonghua Qi; Reyadh Redha; László Rosivall; Matthew D. Breyer; P. Darwin Bell

Macula densa (MD) cells express COX-2 and COX-2-derived PGs appear to signal the release of renin from the renal juxtaglomerular apparatus, especially during volume depletion. However, the synthetic machinery and identity of the specific prostanoid released from intact MD cells remains uncertain. In the present studies, a novel biosensor tool was engineered to directly determine whether MD cells release PGE2 in response to low luminal NaCl concentration ([NaCl]L). HEK293 cells were transfected with the Ca2+-coupled E-prostanoid receptor EP1 (HEK/EP1) and loaded with fura-2. HEK/EP1 cells produced a significant elevation in intracellular [Ca2+] ([Ca2+]i) by 29.6 +/- 12.8 nM (n = 6) when positioned at the basolateral surface of isolated perfused MD cells and [NaCl]L was reduced from 150 mM to zero. HEK/EP1 [Ca2+]i responses were observed mainly in preparations from rabbits on a low-salt diet and were completely inhibited by either a selective COX-2 inhibitor or an EP1 antagonist, and also by 100 microM luminal furosemide. Also, 20-mM graduated reductions in [NaCl]L between 80 and 0 mM caused step-by-step increases in HEK/EP1 [Ca2+]i. Low-salt diet greatly increased the expression of both COX-2 and microsome-associated PGE synthase (mPGES) in the MD. These studies provide the first direct evidence that intact MD cells synthesize and release PGE2 during reduced luminal salt content and suggest that this response is important in the control of renin release and renal vascular resistance during salt deprivation.


Journal of The American Society of Nephrology | 2006

Compartment-Specific Expression and Function of the Chemokine IP-10/CXCL10 in a Model of Renal Endothelial Microvascular Injury

Ulf Panzer; Oliver M. Steinmetz; Rüdiger Reinking; Tobias N. Meyer; Susanne Fehr; André Schneider; Gunther Zahner; Gunter Wolf; Udo Helmchen; Patrick Schaerli; Rolf A.K. Stahl; Friedrich Thaiss

The recruitment of inflammatory cells into renal tissue, mainly T cells and monocytes, is a typical feature of various renal diseases such as glomerulonephritis, thrombotic angiopathies, allograft rejection, and vasculitis. T cells predominantly infiltrate the tubulointerstitium, whereas monocytes are present in the tubulointerstitial and glomerular compartment. Because chemokines play a pivotal role in leukocyte trafficking under inflammatory conditions, this study investigated whether a differential expression of chemokines contributes to the precise coordination of leukocyte subtype trafficking in a rat model of renal microvascular endothelial injury. Renal microvascular endothelial injury was induced in rats by selective renal artery perfusion with an anti-endothelial antibody. Induction of the disease led to severe glomerular and tubulointerstitial endothelial injury with subsequent upregulation of chemokines followed by inflammatory cell recruitment. Among the analyzed chemokine mRNA, IP-10/CXCL10 (119-fold), acting via CXCR3 on activated T cells, and MCP-1/CCL2 (65-fold), acting via CCR2 on monocytes, were by far the most strongly upregulated chemokines. In situ hybridization revealed that IP-10/CXCL10 mRNA was selectively expressed by endothelial cells in the tubulointerstitial area, co-localizing with infiltrating T cells. Despite extensive damage of glomerular vasculature, no IP-10/CXCL10 expression by glomerular endothelial cells was detected. MCP-1/CCL2 mRNA in contrast was detectable in the glomerulus and the tubulointerstitium. Treatment with a neutralizing anti-IP-10/CXCL10 antibody significantly reduced the number of infiltrating tubulointerstitial T cells without affecting monocyte migration and led to an improved renal function. Our study demonstrates a role of IP-10/CXCL10 on T cell recruitment in a rat model of renal endothelial microvascular injury. Furthermore, a differential chemokine expression profile by endothelial cells in different renal compartments was found. These findings are consistent with the hypothesis that functional heterogeneity of endothelial cells from different vascular sites exists and provide an insight into the molecular mechanisms that may mediate compartment-specific T cell and monocyte recruitment in inflammatory renal disease.


Journal of The American Society of Nephrology | 2007

Chemokine Receptor CXCR3 Mediates T Cell Recruitment and Tissue Injury in Nephrotoxic Nephritis in Mice

Ulf Panzer; Oliver M. Steinmetz; Hans-Joachim Paust; Catherine Meyer-Schwesinger; Anett Peters; Jan-Eric Turner; Gunther Zahner; Felix Heymann; Christian Kurts; Helmut Hopfer; Udo Helmchen; Friedrich Haag; André Schneider; Rolf A.K. Stahl

The chemokine receptor CXCR3 is highly expressed on Th1 polarized T cells and has been predicted to play an important role in T cell recruitment and immune response in a number of inflammatory and autoimmune diseases. For testing whether CXCR3 plays a role in renal inflammation, CXCR3-deficient mice were generated and nephrotoxic nephritis was induced in C57BL/6 CXCR3(-/-) and C57BL/6 wild-type mice. Induction of the nephrotoxic nephritis leads to an increased renal mRNA expression of IP-10/CXCL10 (8.6-fold), Mig/CXCL9 (2.3-fold), and I-TAC/CXCL11 (4.9-fold) during the autologous phase at days 7 and 14. This increased chemokine expression was paralleled by the renal infiltration of T cells, followed by renal tissue injury, albuminuria, and loss of renal function. Compared with wild-type mice, CXCR3-deficient mice had significantly reduced renal T cell infiltrates. Moreover, CXCR3(-/-) mice developed less severe nephritis, with significantly lower albuminuria, better renal function, and a reduced frequency of glomerular crescent formation. Nephritic wild-type and CXCR3(-/-) mice both elicited an efficient systemic nephritogenic immune response in terms of antigen-specific IgG production and IFN-gamma expression by splenocytes in response to the nephritogenic antigen. These findings indicate that the ameliorated nephritis in CXCR3-deficient mice is due to impaired renal trafficking of effector T cells rather than their inability to mount an efficient humoral or cellular immune response. The neutralization of CXCR3 might be a promising therapeutic strategy for Th1-dependent inflammatory renal disease.


Hypertension | 2000

Characterization of Murine Vasopressor and Vasodepressor Prostaglandin E 2 Receptors

Yahua Zhang; Youfei Guan; André Schneider; Suzanne Brandon; Richard M. Breyer; Matthew D. Breyer

Four E-prostanoid (EP) receptors, designated EP(1), EP(2), EP(3), and EP(4), mediate the cellular effects of prostaglandin E(2) (PGE(2)). The present studies pharmacologically characterize the vasopressor and vasodepressor EP receptors in wild-type mice (EP(2)(+/+) mice) and mice with targeted disruption of the EP(2) receptor (EP(2)(-/-) mice). Mean arterial pressure (MAP) was measured via a carotid artery catheter in anesthetized male mice. Intravenous infusion of PGE(2) decreased MAP in EP(2)(+/+) mice but increased MAP in EP(2)(-/-) mice. Infusion of EP(3)-selective agonists, including MB28767, SC46275, and sulprostone, increased MAP in both EP(2)(+/+) and EP(2)(-/-) mice. Pretreatment with SC46275 desensitized mice to the subsequent pressor effect of sulprostone, but the vasodepressor effect of PGE(2) in EP(2)(+/+) mice remained intact. Although PGE(2) alone increased MAP in EP(2)(-/-) mice, prior desensitization of the pressor effect with SC46275 allowed a residual vasodepressor effect of PGE(2) to be seen in the EP(2)(-/-) mice. An EP(4)-selective agonist (prostaglandin E(1)-OH) functioned also as a vasodepressor in both EP(2)(-/-) and EP(2)(+/+) mice. High levels of EP(3) receptor mRNA were detected in mouse aortas and rabbit preglomerular arterioles by nuclease protection, with lower expressions of EP(1), EP(2), and EP(4) mRNA. The findings suggest that combined vasodepressor effects of EP(2) and EP(4) receptors normally dominate, accounting for the depressor effects of PGE(2). In contrast, in EP(2)(-/-) mice, EP(4) receptor activity alone is insufficient to overcome the EP(3) vasopressor effect. These findings suggest that a balance between pressor and depressor PGE(2) receptors determines its net effect on arterial pressure and that these receptors may be important therapeutic targets.


Journal of The American Society of Nephrology | 2010

A Maladaptive Role for EP4 Receptors in Podocytes

Erin Stitt-Cavanagh; Wissam H. Faour; Kaede Takami; Anthony Carter; Barbara C. Vanderhyden; Youfei Guan; André Schneider; Matthew D. Breyer; Christopher R.J. Kennedy

Inhibition of p38 mitogen-activated protein kinase and cyclooxygenase-2 reduces albuminuria in models of chronic kidney disease marked by podocyte injury. Previously, we identified a feedback loop in podocytes whereby an in vitro surrogate for glomerular capillary pressure (i.e., mechanical stretch) along with prostaglandin E(2) stimulation of its EP4 receptor induced cyclooxygenase-2 in a p38-dependent manner. Here we asked whether stimulation of EP4 receptors would exacerbate glomerulopathies associated with enhanced glomerular capillary pressure. We generated mice with either podocyte-specific overexpression or depletion of the EP4 receptor (EP4(pod+) and EP4(pod-/-), respectively). Glomerular prostaglandin E(2)-stimulated cAMP levels were eightfold greater for EP4(pod+) mice compared with nontransgenic (non-TG) mice. In contrast, EP4 mRNA levels were >50% lower, and prostaglandin E(2)-induced cAMP synthesis was absent in podocytes isolated from EP4(pod-/-) mice. Non-TG and EP4(pod+) mice underwent 5/6 nephrectomy and exhibited similar increases in systolic BP (+25 mmHg) by 4 weeks compared with sham-operated controls. Two weeks after nephrectomy, the albumin-creatinine ratio of EP4(pod+) mice (3438 μg/mg) was significantly higher than that of non-TG mice (773 μg/mg; P < 0.0001). Consistent with more severe renal injury, the survival rate for nephrectomized EP4(pod+) mice was significantly lower than that for non-TG mice (14 versus 67%). In contrast, 6 weeks after nephrectomy, the albumin-creatinine ratio of EP4(pod-/-) mice (753 μg/mg) was significantly lower than that of non-TG mice (2516 μg/mg; P < 0.05). These findings suggest that prostaglandin E(2), acting via EP4 receptors contributes to podocyte injury and compromises the glomerular filtration barrier.


Biochemical Journal | 2009

Prostaglandin EP2 and EP4 receptors modulate expression of the chemokine CCL2 (MCP-1) in response to LPS-induced renal glomerular inflammation.

Gunther Zahner; Melanie Schaper; Ulf Panzer; Malte A. Kluger; Rolf A.K. Stahl; Friedrich Thaiss; André Schneider

The pro-inflammatory chemokine CCL2 [chemokine (Cys-Cys motif) ligand 2; also known as MCP-1 (monocyte chemotactic protein-1)] is up-regulated in the glomerular compartment during the early phase of LPS (lipopolysaccharide)-induced nephritis. This up-regulation also occurs in cultured MCs (mesangial cells) and is more pronounced in MCs lacking the PGE2 (prostaglandin E2) receptor EP2 or in MCs treated with a prostaglandin EP4 receptor antagonist. To examine a possible feedback mechanism of EP receptor stimulation on CCL2 expression, we used an in vitro model of MCs with down-regulated EP receptor expression. Selectively overexpressing the various EP receptors in these cells then allows the effects on the LPS-induced CCL2 expression to be examined. Cells were stimulated with LPS and CCL2 gene expression was examined and compared with LPS-stimulated, mock-transfected PTGS2 [prostaglandin-endoperoxide synthase 2, also known as COX-2 (cyclo-oxygenase-2)]-positive cells. Overexpression of EP1, as well as EP3, had no effect on LPS-induced Ccl2 mRNA expression. In contrast, overexpression of EP2, as well as EP4, significantly decreased LPS-induced CCL2 expression. These results support the hypothesis that PTGS2-derived prostaglandins, when strongly induced, counter-balance inflammatory processes through the EP2 and EP4 receptors in MCs.


Cellular & Molecular Biology Letters | 2009

The transcriptional regulation of podocin (NPHS2) by Lmx1b and a promoter single nucleotide polymorphism.

Sigrid Harendza; Rolf A.K. Stahl; André Schneider

Podocin (NPHS2) is a component of the glomerular slit membrane with major regulatory functions in the renal permeability of proteins. A loss of podocin and a decrease in its resynthesis can influence the outcome of renal diseases with nephrotic syndrome, such as minimal change glomerulonephritis, focal segmental glomerulosclerosis (FSGS) and membranous nephropathy. The transcriptional regulation of podocin may play a major role in these processes. We defined the transcriptional regulation of the human podocin gene and the influence of single nucleotide polymorphisms (SNPs) within its promoter region in the podocytes using reporter gene constructs and gel shift analysis. In addition, we took genomic DNA from healthy Caucasian blood donors and from biopsies of kidneys with defined renal diseases and screened it for podocin promoter SNPs. Our data shows that the transcription of podocin is mainly regulated by the transcription factor Lmx1b, which binds to a FLAT-F element and displays enhancer function. With the SNP variant −116T, there was a significant reduction in luciferase activity, and nuclear protein binding was observed, while the SNP −670C/T did not display functionality. The allelic distribution of −116C/T in patients with kidney diseases leading to nephrotic syndrome was not significantly different from that in the control group. Our data indicates that among other factors, podocin is specifically regulated by the transcription factor Lmx1b and by the functional polymorphism -116C/T. However, there is no association between −116C/T and susceptibility to minimal change glomerulonephritis, focal segmental glomerulosclerosis or membranous nephropathy.


Kidney International | 2004

Membrane-associated PGE synthase-1 (mPGES-1) is coexpressed with both COX-1 and COX-2 in the kidney

André Schneider; Yahua Zhang; Ming-Zhi Zhang; Wendell J. Lu; Reena Rao; Xuefeng Fan; Reyadh Redha; Linda S. Davis; Richard M. Breyer; Raymond C. Harris; Youfei Guan; Matthew D. Breyer


American Journal of Physiology-renal Physiology | 2001

Urogenital distribution of a mouse membrane-associated prostaglandin E2 synthase

Youfei Guan; Yahua Zhang; André Schneider; Denis Riendeau; Joseph A. Mancini; Linda S. Davis; Martin Kömhoff; Richard M. Breyer; Matthew D. Breyer


American Journal of Physiology-renal Physiology | 2001

Peroxisome proliferator-activated receptor-γ activity is associated with renal microvasculature

Youfei Guan; Yahua Zhang; André Schneider; Linda S. Davis; Richard M. Breyer; Matthew D. Breyer

Collaboration


Dive into the André Schneider's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gunther Zahner

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge