Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea A. Domenighetti is active.

Publication


Featured researches published by Andrea A. Domenighetti.


Journal of Clinical Investigation | 2008

An FHL1-containing complex within the cardiomyocyte sarcomere mediates hypertrophic biomechanical stress responses in mice

Farah Sheikh; Anna Raskin; Pao Hsien Chu; Stephan Lange; Andrea A. Domenighetti; Ming Zheng; Xingqun Liang; Tong Zhang; Toshitaka Yajima; Yusu Gu; Nancy D. Dalton; Sushil K. Mahata; Gerald W. Dorn; Joan Heller-Brown; Kirk L. Peterson; Jeffrey H. Omens; Andrew D. McCulloch; Ju Chen

The response of cardiomyocytes to biomechanical stress can determine the pathophysiology of hypertrophic cardiac disease, and targeting the pathways regulating these responses is a therapeutic goal. However, little is known about how biomechanical stress is sensed by the cardiomyocyte sarcomere to transduce intracellular hypertrophic signals or how the dysfunction of these pathways may lead to disease. Here, we found that four-and-a-half LIM domains 1 (FHL1) is part of a complex within the cardiomyocyte sarcomere that senses the biomechanical stress-induced responses important for cardiac hypertrophy. Mice lacking Fhl1 displayed a blunted hypertrophic response and a beneficial functional response to pressure overload induced by transverse aortic constriction. A link to the Galphaq (Gq) signaling pathway was also observed, as Fhl1 deficiency prevented the cardiomyopathy observed in Gq transgenic mice. Mechanistic studies demonstrated that FHL1 plays an important role in the mechanism of pathological hypertrophy by sensing biomechanical stress responses via the N2B stretch sensor domain of titin and initiating changes in the titin- and MAPK-mediated responses important for sarcomere extensibility and intracellular signaling. These studies shed light on the physiological regulation of the sarcomere in response to hypertrophic stress.


Circulation Research | 2006

Cardiac Sodium Channel Nav1.5 Is Regulated by a Multiprotein Complex Composed of Syntrophins and Dystrophin

Bruno Gavillet; Jean Sébastien Rougier; Andrea A. Domenighetti; Romina Behar; Christophe Boixel; Patrick Ruchat; Hans A. Lehr; Thierry Pedrazzini; Hugues Abriel

The cardiac sodium channel Nav1.5 plays a key role in cardiac excitability and conduction. The purpose of this study was to elucidate the role of the PDZ domain-binding motif formed by the last three residues (Ser-Ile-Val) of the Nav1.5 C-terminus. Pull-down experiments were performed using Nav1.5 C-terminus fusion proteins and human or mouse heart protein extracts, combined with mass spectrometry analysis. These experiments revealed that the C-terminus associates with dystrophin, and that this interaction was mediated by alpha- and beta-syntrophin proteins. Truncation of the PDZ domain-binding motif abolished the interaction. We used dystrophin-deficient mdx5cv mice to study the role of this protein complex in Nav1.5 function. Western blot experiments revealed a 50% decrease in the Nav1.5 protein levels in mdx5cv hearts, whereas Nav1.5 mRNA levels were unchanged. Patch-clamp experiments showed a 29% decrease of sodium current in isolated mdx5cv cardiomyocytes. Finally, ECG measurements of the mdx5cv mice exhibited a 19% reduction in the P wave amplitude, and an 18% increase of the QRS complex duration, compared with controls. These results indicate that the dystrophin protein complex is required for the proper expression and function of Nav1.5. In the absence of dystrophin, decreased sodium current may explain the alterations in cardiac conduction observed in patients with dystrophinopathies.


Journal of Experimental Medicine | 2008

Control of the adaptive response of the heart to stress via the Notch1 receptor pathway

Adrien Croquelois; Andrea A. Domenighetti; Mohamed Nemir; Mario Lepore; Nathalie Rosenblatt-Velin; Freddy Radtke; Thierry Pedrazzini

In the damaged heart, cardiac adaptation relies primarily on cardiomyocyte hypertrophy. The recent discovery of cardiac stem cells in the postnatal heart, however, suggests that these cells could participate in the response to stress via their capacity to regenerate cardiac tissues. Using models of cardiac hypertrophy and failure, we demonstrate that components of the Notch pathway are up-regulated in the hypertrophic heart. The Notch pathway is an evolutionarily conserved cell-to-cell communication system, which is crucial in many developmental processes. Notch also plays key roles in the regenerative capacity of self-renewing organs. In the heart, Notch1 signaling takes place in cardiomyocytes and in mesenchymal cardiac precursors and is activated secondary to stimulated Jagged1 expression on the surface of cardiomyocytes. Using mice lacking Notch1 expression specifically in the heart, we show that the Notch1 pathway controls pathophysiological cardiac remodeling. In the absence of Notch1, cardiac hypertrophy is exacerbated, fibrosis develops, function is altered, and the mortality rate increases. Therefore, in cardiomyocytes, Notch controls maturation, limits the extent of the hypertrophic response, and may thereby contribute to cell survival. In cardiac precursors, Notch prevents cardiogenic differentiation, favors proliferation, and may facilitate the expansion of a transient amplifying cell compartment.


The Journal of Physiology | 1998

An intercellular regenerative calcium wave in porcine coronary artery endothelial cells in primary culture

Andrea A. Domenighetti; Jean Louis Bény; Fabienne Chabaud; Maud Frieden

1 A regenerative calcium wave is an increase in cytosolic free calcium concentration ([Ca2+]i) which extends beyond the stimulated cells without decrement of amplitude, kinetics of [Ca2+]i increase and speed of propagation. 2 The aim of the present study was to test the hypothesis that such a wave could be evoked by bradykinin stimulation and by scraping cultured endothelial cells from porcine coronary arteries. 3 Calcium imaging was performed using the calcium‐sensitive dye fura‐2. A wound or a delivery of bradykinin to two to three cells on growing clusters of ≈300 cells caused an increase in [Ca2+]i which was propagated throughout the cluster in a regenerative manner over distances up to 400 μm. This wave spread through gap junctions since it was inhibited by the cell uncoupler palmitoleic acid. 4 The same experiments performed in confluent cultures caused a rise in [Ca2+]i which failed to propagate in a regenerative way. The wave propagation probably failed because the confluent cells were less dye coupled than the growing cells. This was confirmed by immunohistology which detected a dramatic decrease in the number of connexin 40 gap junctions in the confluent cultures. 5 The regenerative propagation of the wave was blocked by inhibitors of calcium‐induced calcium release (CICR) and phospholipase C (PLC), and by suppression of extracellular calcium, but not by clamping the membrane potential with high‐potassium solution. 6 We conclude that regenerative intercellular calcium waves exist in cultured islets but not in confluent cultures of endothelial cells. An increase in [Ca2+]i is not sufficient to trigger a regenerative propagation. The PLC pathway, CICR and extracellular calcium are all necessary for a fully regenerated propagation.


Journal of Molecular and Cellular Cardiology | 2010

Targeted GLUT-4 deficiency in the heart induces cardiomyocyte hypertrophy and impaired contractility linked with Ca2+ and proton flux dysregulation

Andrea A. Domenighetti; Vennetia R. Danes; Claire L. Curl; Jennifer M. Favaloro; Joseph Proietto; Lea M.D. Delbridge

There is clinical evidence to suggest that impaired myocardial glucose uptake contributes to the pathogenesis of hypertrophic, insulin-resistant cardiomyopathy. The goal of this study was to determine whether cardiac deficiency of the insulin-sensitive glucose transporter, GLUT4, has deleterious effect on cardiomyocyte excitation-contraction coupling. Cre-Lox mouse models of cardiac GLUT4 knockdown (KD, 85% reduction) and knockout (KO, >95% reduction), which exhibit similar systemic hyperinsulinemic and hyperglycemic states, were investigated. The Ca(2+) current (I(Ca)) and Na(+)-Ca(2+) exchanger (NCX) fluxes, Na(+)-H(+) exchanger (NHE) activity, and contractile performance of GLUT4-deficient myocytes was examined using whole-cell patch-clamp, epifluorescence, and imaging techniques. GLUT4-KO exhibited significant cardiac enlargement characterized by cardiomyocyte hypertrophy (40% increase in cell area) and fibrosis. GLUT4-KO myocyte contractility was significantly diminished, with reduced mean maximum shortening (5.0+/-0.4% vs. 6.2+/-0.6%, 5 Hz). Maximal rates of shortening and relaxation were also reduced (20-25%), and latency was delayed. In GLUT4-KO myocytes, the I(Ca) density was decreased (-2.80+/-0.29 vs. -5.30+/-0.70 pA/pF), and mean I(NCX) was significantly increased in both outward (by 60%) and inward (by 100%) directions. GLUT4-KO expression levels of SERCA2 and RyR2 were reduced by approximately 50%. NHE-mediated H(+) flux in response to NH(4)Cl acid loading was markedly elevated GLUT4-KO myocytes, associated with doubled expression of NHE1. These findings demonstrate that, independent of systemic endocrinological disturbance, cardiac GLUT4 deficiency per se provides a lesion sufficient to induce profound alterations in cardiomyocyte Ca(2+) and pH homeostasis. Our investigation identifies the cardiac GLUT4 as a potential primary molecular therapeutic target in ameliorating the functional deficits associated with insulin-resistant cardiomyopathy.


Hypertension | 2005

Potassium Supplementation Reduces Cardiac and Renal Hypertrophy Independent of Blood Pressure in DOCA/Salt Mice

Qing Wang; Andrea A. Domenighetti; Thierry Pedrazzini; Michel Burnier

We have demonstrated previously that deoxycorticosterone acetate (DOCA)/salt induces cardiac hypertrophy and left ventricular dysfunction independent of blood pressure (BP) in 1–renin gene mice. Because these mice also develop hypokalemia and metabolic alkalosis caused by mineralocorticoid excess, we investigated whether correcting hypokalemia by dietary potassium supplementation would prevent the DOCA/salt-induced cardiac hypertrophy, cardiac dysfunction, and electrocardiographic changes in normotensive, 1–renin gene and hypertensive, 2–renin gene mice. All mice were studied after 5 weeks of DOCA and salt administration. Potassium was given by adding 0.4 or 0.6% KCl to the drinking water. Our results show that correction of hypokalemia and metabolic alkalosis prevents cardiac hypertrophy and normalizes cardiac function without affecting BP in normotensive, 1–renin gene mice. In hypertensive, 2–renin gene mice, potassium supplementation induces a significant decrease in BP. The decrease in BP and correction of kalemia are associated with a significant but partial correction of cardiac hypertrophy. In both group of mice, electrocardiographic alterations were measured after administration of DOCA/salt, which could be corrected by potassium supplementation. Thus, these results show that correction of hypokalemia and metabolic alkalosis does prevent the development of cardiac hypertrophy and normalizes cardiac function independent of BP in normotensive, 1–renin gene mice that receive excess mineralocorticoid and salt. In 2–renin gene, hypertensive mice, potassium supplementation also prevents the development of cardiac hypertrophy, but the effect cannot be separated from the decrease in BP.


Journal of Cell Science | 2014

Vinculin directly binds zonula occludens-1 and is essential for stabilizing connexin-43-containing gap junctions in cardiac myocytes

Alice Zemljic-Harpf; Joseph C. Godoy; Oleksandr Platoshyn; Elizabeth K. Asfaw; Anna R. Busija; Andrea A. Domenighetti; Robert S. Ross

ABSTRACT Vinculin (Vcl) links actin filaments to integrin- and cadherin-based cellular junctions. Zonula occludens-1 (ZO-1, also known as TJP1) binds connexin-43 (Cx43, also known as GJA1), cadherin and actin. Vcl and ZO-1 anchor the actin cytoskeleton to the sarcolemma. Given that loss of Vcl from cardiomyocytes causes maldistribution of Cx43 and predisposes cardiomyocyte-specific Vcl-knockout mice with preserved heart function to arrhythmia and sudden death, we hypothesized that Vcl and ZO-1 interact and that loss of this interaction destabilizes gap junctions. We found that Vcl, Cx43 and ZO-1 colocalized at the intercalated disc. Loss of cardiomyocyte Vcl caused parallel loss of ZO-1 from intercalated dics. Vcl co-immunoprecipitated Cx43 and ZO-1, and directly bound ZO-1 in yeast two-hybrid studies. Excision of the Vcl gene in neonatal mouse cardiomyocytes caused a reduction in the amount of Vcl mRNA transcript and protein expression leading to (1) decreased protein expression of Cx43, ZO-1, talin, and &bgr;1D-integrin, (2) reduced PI3K activation, (3) increased activation of Akt, Erk1 and Erk2, and (4) cardiomyocyte necrosis. In summary, this is the first study showing a direct interaction between Vcl and ZO-1 and illustrates how Vcl plays a crucial role in stabilizing gap junctions and myocyte integrity.


Journal of the Renin-Angiotensin-Aldosterone System | 2003

Elevated intracardiac angiotensin II leads to cardiac hypertrophy and mechanical dysfunction in normotensive mice

Catherine E. Huggins; Andrea A. Domenighetti; Thierry Pedrazzini; Salvatore Pepe; Lea M.D. Delbridge

Introduction Angiotensin II (Ang II) is known to induce cardiac growth and modulate myocardial contractility. It has been reported that elevated levels of endogenous Ang II contribute to the development of cardiac hypertrophy in hypertensives. However, the long-term functional effects of cardiac exposure to Ang II in normotensives is unclear. A recently developed transgenic mouse (TG1306/1R), in which cardiac-specific overproduction of Ang II produces primary hypertrophy, provides a new experimental model for investigation of this phenotype. The aim of the present study was to use this model to investigate whether there is a functional deficit in primary hypertrophy that may predispose to cardiac failure and sudden death. We hypothesised that primary cardiac hypertrophy is associated with mechanical dysfunction in the basal state. Methods Normotensive heterozygous TG1306/1R mice harbouring multiple copies of a cardiac-specific rat angiotensinogen gene were studied at age 30—40 weeks and compared with age-matched wild-type littermates. Left ventricular function was measured ex vivo in bicarbonate buffer-perfused, Langendorffmounted hearts ( at a perfusion pressure of 80 mmHg, 37°C) using a fluid-filled PVC balloon interfaced to a pressure transducer and digital data acquisition system. Results There was no difference in the mean (±SEM) intrinsic heart rate of TG1306/1R and wild-type control mice (357.4±11.8 vs. 367.5±20.9 bpm, n=9 & 7). Under standardised end-diastolic pressure conditions, TG1306/1R hearts exhibited a significant reduction in peak developed pressure (132.2±9.4 vs. 161.5±3.1 mmHg, n=9 & 7, p<0.05) and maximum rate of pressure development (3566.7±323.7 vs. 4486.3±109.4 mmHg, n=9 & 7, p<0.05). TG1306/1R mice show a significant correlation between incidence of arrhythmia and increasing heart size (Spearmans correlation coefficient 0.61). Conclusion These data demonstrate that chronic in vivo exposure to elevated levels of intra-cardiac Ang II is associated with significant contractile abnormalities evident in the ex vivo intact heart. Our findings suggest that endogenous overproduction of cardiac Ang II, independent of changes in blood pressure, is sufficient to induce ventricular remodelling that culminates in impaired cardiac function which may precede failure.


Circulation Research | 2009

Angiotensin II–Mediated Adaptive and Maladaptive Remodeling of Cardiomyocyte Excitation–Contraction Coupling

Konstantin Gusev; Andrea A. Domenighetti; Lea M.D. Delbridge; Thierry Pedrazzini; Ernst Niggli; Marcel Egger

Cardiac hypertrophy is associated with alterations in cardiomyocyte excitation–contraction coupling (ECC) and Ca2+ handling. Chronic elevation of plasma angiotensin II (Ang II) is a major determinant in the pathogenesis of cardiac hypertrophy and congestive heart failure. However, the molecular mechanisms by which the direct actions of Ang II on cardiomyocytes contribute to ECC remodeling are not precisely known. This question was addressed using cardiac myocytes isolated from transgenic (TG1306/1R [TG]) mice exhibiting cardiac specific overexpression of angiotensinogen, which develop Ang II–mediated cardiac hypertrophy in the absence of hemodynamic overload. Electrophysiological techniques, photolysis of caged Ca2+ and confocal Ca2+ imaging were used to examine ECC remodeling at early (≈20 weeks of age) and late (≈60 weeks of age) time points during the development of cardiac dysfunction. In young TG mice, increased cardiac Ang II levels induced a hypertrophic response in cardiomyocyte, which was accompanied by an adaptive change of Ca2+ signaling, specifically an upregulation of the Na+/Ca2+ exchanger–mediated Ca2+ transport. In contrast, maladaptation was evident in older TG mice, as suggested by reduced sarcoplasmic reticulum Ca2+ content resulting from a shift in the ratio of plasmalemmal Ca2+ removal and sarcoplasmic reticulum Ca2+ uptake. This was associated with a conserved ECC gain, consistent with a state of hypersensitivity in Ca2+-induced Ca2+ release. Together, our data suggest that chronic elevation of cardiac Ang II levels significantly alters cardiomyocyte ECC in the long term, and thereby contractility, independently of hemodynamic overload and arterial hypertension.


Human Molecular Genetics | 2014

Loss of FHL1 induces an age-dependent skeletal muscle myopathy associated with myofibrillar and intermyofibrillar disorganization in mice

Andrea A. Domenighetti; Pao Hsien Chu; Tongbin Wu; Farah Sheikh; David S. Gokhin; Ling T. Guo; Ziyou Cui; Angela K. Peter; Danos C. Christodoulou; Michael Parfenov; Joshua M. Gorham; Daniel Y. Li; Indroneal Banerjee; Xianyin Lai; Frank A. Witzmann; Christine E. Seidman; Jonathan G. Seidman; Aldrin V. Gomes; G. Diane Shelton; Richard L. Lieber; Ju Chen

Recent human genetic studies have provided evidences that sporadic or inherited missense mutations in four-and-a-half LIM domain protein 1 (FHL1), resulting in alterations in FHL1 protein expression, are associated with rare congenital myopathies, including reducing body myopathy and Emery-Dreifuss muscular dystrophy. However, it remains to be clarified whether mutations in FHL1 cause skeletal muscle remodeling owing to gain- or loss of FHL1 function. In this study, we used FHL1-null mice lacking global FHL1 expression to evaluate loss-of-function effects on skeletal muscle homeostasis. Histological and functional analyses of soleus, tibialis anterior and sternohyoideus muscles demonstrated that FHL1-null mice develop an age-dependent myopathy associated with myofibrillar and intermyofibrillar (mitochondrial and sarcoplasmic reticulum) disorganization, impaired muscle oxidative capacity and increased autophagic activity. A longitudinal study established decreased survival rates in FHL1-null mice, associated with age-dependent impairment of muscle contractile function and a significantly lower exercise capacity. Analysis of primary myoblasts isolated from FHL1-null muscles demonstrated early muscle fiber differentiation and maturation defects, which could be rescued by re-expression of the FHL1A isoform, highlighting that FHL1A is necessary for proper muscle fiber differentiation and maturation in vitro. Overall, our data show that loss of FHL1 function leads to myopathy in vivo and suggest that loss of function of FHL1 may be one of the mechanisms underlying muscle dystrophy in patients with FHL1 mutations.

Collaboration


Dive into the Andrea A. Domenighetti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ju Chen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Farah Sheikh

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephan Lange

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Raskin

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge