Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Aiello is active.

Publication


Featured researches published by Andrea Aiello.


Journal of Optics | 2013

Goos–Hänchen and Imbert–Fedorov beam shifts: an overview

Konstantin Y. Bliokh; Andrea Aiello

We consider reflection and transmission of polarized paraxial light beams at a plane dielectric interface. The field transformations taking into account a finite beam width are described based on the plane-wave representation and geometric rotations. Using geometrical-optics coordinate frames accompanying the beams, we construct an effective Jones matrix characterizing spatial-dispersion properties of the interface. This results in a unified self-consistent description of the Goos–Hanchen and Imbert–Fedorov shifts (the latter being also known as the spin Hall effect of light). Our description reveals the intimate relation of the transverse Imbert–Fedorov shift to the geometric phases between constituent waves in the beam spectrum and to the angular momentum conservation for the whole beam. Both spatial and angular shifts are considered as well as their analogues for higher-order vortex beams carrying intrinsic orbital angular momentum. We also give a brief overview of various extensions and generalizations of the basic beam-shift phenomena and related effects.


Physical Review Letters | 2005

Experimental demonstration of fractional orbital angular momentum entanglement of two photons.

S. S. R. Oemrawsingh; Xiao-song Ma; Dirk Voigt; Andrea Aiello; E. R. Eliel; Gert Wim 'T Hooft; J. P. Woerdman

The singular nature of a noninteger spiral phase plate allows easy manipulation of spatial degrees of freedom of photon states. Using two such devices, we have observed very high-dimensional spatial entanglement of twin photons generated by spontaneous parametric down-conversion.


Physical Review A | 2010

Angular momenta and spin-orbit interaction of nonparaxial light in free space

Konstantin Y. Bliokh; Miguel A. Alonso; Elena A. Ostrovskaya; Andrea Aiello

We give an exact self-consistent operator description of the spin and orbital angular momenta, position, and spin-orbit interactions of nonparaxial light in free space. Both quantum-operator formalism and classical energy-flow approach are presented. We apply the general theory to symmetric and asymmetric Bessel beams exhibiting spin- and orbital-dependent intensity profiles. The exact wave solutions are clearly interpreted in terms of the Berry phases, quantization of caustics, and Hall effects of light, which can be readily observedexperimentally.


Nature Communications | 2013

A versatile source of single photons for quantum information processing

Michael Förtsch; Josef U. Fürst; Christoffer Wittmann; Dmitry Strekalov; Andrea Aiello; M. V. Chekhova; Christine Silberhorn; Gerd Leuchs; Christoph Marquardt

The generation of high-quality single-photon states with controllable narrow spectral bandwidths and central frequencies is key to facilitate efficient coupling of any atomic system to non-classical light fields. Such an interaction is essential in numerous experiments for fundamental science and applications in quantum communication and information processing, as well as in quantum metrology. Here we implement a fully tunable, narrow-band and efficient single-photon source based on a whispering gallery mode resonator. Our disk-shaped, monolithic and intrinsically stable resonator is made of lithium niobate and supports a cavity-assisted spontaneous parametric down-conversion process. The generated photon pairs are emitted into two highly tunable resonator modes. We verify wavelength tuning over 100 nm of both modes with controllable bandwidth between 7.2 and 13 MHz. Heralding of single photons yields anti-bunching with g(2)(0)<0.2.


Physical Review Letters | 2011

Quantum light from a whispering-gallery-mode disk resonator.

Josef U. Fürst; Dmitry Strekalov; Dominique Elser; Andrea Aiello; Ulrik L. Andersen; Marquardt Ch; Gerd Leuchs

Optical parametric down-conversion has proven to be a valuable source of nonclassical light. The process is inherently able to produce twin-beam correlations along with individual intensity squeezing of either parametric beam, when pumped far above threshold. Here, we present for the first time the direct observation of intensity squeezing of -1.2  dB of each of the individual parametric beams in parametric down-conversion by use of a high quality whispering-gallery-mode disk resonator. In addition, we observed twin-beam quantum correlations of -2.7  dB with this cavity. Such resonators feature strong optical confinement and offer tunable coupling to an external optical field. This work exemplifies the potential of crystalline whispering-gallery-mode resonators for the generation of quantum light. The simplicity of this device makes the application of quantum light in various fields highly feasible.


Optics Express | 2011

Classical and quantum properties of cylindrically polarized states of light

Annemarie Holleczek; Andrea Aiello; Christian Gabriel; Christoph Marquardt; Gerd Leuchs

We investigate theoretical properties of beams of light with non-uniform polarization patterns. Specifically, we determine all possible configurations of cylindrically polarized modes (CPMs) of the electromagnetic field, calculate their total angular momentum and highlight the subtleties of their structure. Furthermore, a hybrid spatio-polarization description for such modes is introduced and developed. In particular, two independent Poincaré spheres have been introduced to represent simultaneously the polarization and spatial degree of freedom of CPMs. Possible mode-to-mode transformations accomplishable with the help of Bconventional polarization and spatial phase retarders are shown within this representation. Moreover, the importance of these CPMs in the quantum optics domain due to their classical features is highlighted.


european quantum electronics conference | 2011

Low-threshold optical parametric oscillations in a whispering gallery mode resonator

Josef U. Fürst; Dmitry Strekalov; Dominique Elser; Andrea Aiello; Ulrik L. Andersen; Christoph Marquardt; Gerd Leuchs

Whispering gallery mode (WGM) resonators feature strong optical confinement, small mode volume, and offer tunable coupling to an external optical field. Fabricating WGM resonators from lithium niobate one can take advantage of these properties to achieve very strong optical nonlinear response, e. g. parametric downconversion (PDC). This process offers a highly wavelength tunable light source and is used as a state of the art source for nonclassical light. Driving PDC in cavities, also referred to as an optical parametric oscillator (OPO), provides efficient wavelength conversion. Thus, it is intruiging to investigate PDC in a WGM resonator, although phase matching conditions become involved in spherical geometry. In the process of higher harmonic generation, quasi phase-matching has already been demonstrated in a lithium niobate WGM cavity [1, 2], showing the potential of these resonators. Here we present a highly efficient OPO with a WGM resonator using natural temperature phase matching, where the individual optical fields have narrow optical linewidth [3].


Physical Review A | 2010

How orbital angular momentum affects beam shifts in optical reflection

M. Merano; Nathaniel Hermosa; J. P. Woerdman; Andrea Aiello

It is well known that reflection of a Gaussian light beam (TEM{sub 00}) by a planar dielectric interface leads to four beam shifts when compared to the geometrical-optics prediction. These are the spatial Goos-Haenchen (GH) shift, the angular GH shift, the spatial Imbert-Fedorov (IF) shift, and the angular IF shift. We report here, theoretically and experimentally, that endowing the beam with orbital angular momentum leads to coupling of these four shifts; this is described by a 4x4 mixing matrix.


New Journal of Physics | 2014

Classical entanglement in polarization metrology

Falk Töppel; Andrea Aiello; Christoph Marquardt; Elisabeth Giacobino; Gerd Leuchs

Quantum approaches relying on entangled photons have been recently proposed to increase the efficiency of optical measurements. We demonstrate here that, surprisingly, the use of classical light with entangled degrees of freedom can also bring outstanding advantages over conventional measurements in polarization metrology. Specifically, we show that radially polarized beams of light allow to perform real-time single-shot Mueller matrix polarimetry. Our results also indicate that quantum optical procedures requiring entanglement without nonlocality can be actually achieved in the classical optics regime.


Physical Review Letters | 2008

Shannon dimensionality of quantum channels and its application to photon entanglement.

J. B. Pors; S. S. R. Oemrawsingh; Andrea Aiello; M. P. van Exter; E. R. Eliel; G. W. 't Hooft; J. P. Woerdman

We introduce the concept of Shannon dimensionality D as a new way to quantify bipartite entanglement as measured in an experiment. This is applied to orbital-angular-momentum entanglement of two photons, using two state analyzers composed of a rotatable angular-sector phase plate that is lens coupled to a single-mode fiber. We can deduce the value of D directly from the observed two-photon coincidence fringe. In our experiment, D varies between 2 and 6, depending on the experimental conditions. We predict how the Shannon dimensionality evolves when the number of angular sectors imprinted in the phase plate is increased and anticipate that D approximately 50 is experimentally within reach.

Collaboration


Dive into the Andrea Aiello's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge