Andrea Alaimo
Kore University of Enna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrea Alaimo.
Journal of Intelligent Material Systems and Structures | 2011
Andrea Alaimo; Alberto Milazzo; Calogero Orlando
The dynamic behavior of piezoelectric active repair bonded on cracked structures is analyzed in this article. The boundary element code used to perform the simulations is implemented in the framework of piezoelectricity in order to model the coupling between the elastic and the electric fields, which represents the most important feature of piezoelectric media. The fracture mechanics problem, i.e. the crack, as well as the bonding layer between the host structure and the active patch is modeled by means of the multidomain technique provided with an interface spring model. More particularly, the spring interface model allows considering the bonding layer as a zero-thickness elastic ply characterized by normal and tangential stiffness constants. The crack is also modeled as an elastic interface characterized by vanishing stiffness. The dual reciprocity method (DRM) has been used in the present time-dependent application for the approximation of the domain inertia terms. Numerical analyses have been carried out in order to characterize the dynamic repairing mechanism of the assembled structure by means of the computation of the dynamic stress intensity factors and discussions are presented to highlight the effect of the inertial forces on the fracture mechanics behavior of the overall assembled structure.
11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013: ICNAAM 2013 | 2013
Andrea Alaimo; M. Bruno; Alberto Milazzo; C Orlando
A mathematical model based on nonlocal third-order shear deformation plate theory has been developed to evaluate the mechanical and electromagnetic behavior of magneto-electro-elastic nanoplates. Two types of magneto-electro-elastic composites have been considered, all of them combination of Barium Titanate sheets, that represents the piezoelectric phase, and Cobalt Ferrite, that is the piezomagnetic component. Setting magneto-electric boundary conditions on each laminate, it has been possible to extrapolate and to analyze free vibrations frequencies for all considered plates, allowing to do objective assessments on what factors influence laminate modes and, especially, how these vary in the passage from normal to nanometric dimensions.
Journal of Intelligent Material Systems and Structures | 2016
Andrea Alaimo; Alberto Milazzo; Calogero Orlando
A one-dimensional finite element method for generally layered smart beams is presented in this paper. The model implements the first-order shear deformation beam theory and is based on the preliminary analytical condensation of the electric state to the mechanical state. This allows us to establish an effective mechanical beam kinematically equivalent to the original smart beam including the effects of electro-elastic couplings. The contributions of the external electric loads are included in both the equivalent stiffness properties and the equivalent mechanical boundary conditions. Hermite shape functions, which depend on parameters representative of the staking sequence through the equivalent electro-elastic stiffness coefficients, are used to formulate the finite element method. The state space representation is then invoked for the assembled smart beam finite element model to favor its implementation in a block diagram environment for multi-domain simulation. Validation results and solutions for passive and active vibrations damping system are presented last.
Mechanics of Advanced Materials and Structures | 2017
Andrea Alaimo; Giuseppe Davi; Alberto Milazzo; Calogero Orlando
ABSTRACT The article presents an analytical theory for multilayered composite beams subjected to transverse uniformly distributed loads. The formulation is based on a layerwise model characterized by third-order approximation of the axial displacements and fourth-order approximation of the transverse displacements. The layerwise kinematical model is rewritten in terms of generalized variables. The beam equilibrium equations, expressed in terms of stress resultant, allow writing the boundary value governing problem. The layerwise fields are obtained by postprocessing steps. The main advantage is to ensure the accuracy level associated to the layerwise formulations preserving the computational efficiency of the equivalent-single-layer theories.
Sensors | 2013
Andrea Alaimo; Alberto Milazzo; Calogero Orlando; Antonio Messineo
The increasing development of smart materials, such as piezoelectric and shape memory alloys, has opened new opportunities for improving repair techniques. Particularly, active repairs, based on the converse piezoelectric effect, can increase the life of a structure by reducing the crack opening. A deep characterization of the electromechanical behavior of delaminated composite structures, actively repaired by piezoelectric patches, can be achieved by considering the adhesive layer between the host structure and the repair and by taking into account the frictional contact between the crack surfaces. In this paper, Boundary Element (BE) analyses performed on delaminated composite structures repaired by active piezoelectric patches are presented. A two-dimensional boundary integral formulation for piezoelectric solids based on the multi-domain technique to model the composite host damaged structures and the bonded piezoelectric patches is employed. An interface spring model is also implemented to take into account the finite stiffness of the bonding layers and to model the frictional contact between the delamination surfaces, by means of an iterative procedure. The effect of the adhesive between the plies of piezoelectric bimorph devices on the electromechanical response is first pointed out for both sensing and actuating behavior. Then, the effect of the frictional contact condition on the fracture mechanics behavior of actively repaired delaminated composite structures is investigated.
Advanced Materials Research | 2012
Andrea Alaimo; Alberto Milazzo; Calogero Orlando
In this paper a 2D boundary element model is used to characterize the transient response of a piezoelectric based structural health monitoring system for cracked beam. The BE model is written for piezoelectric non-homogeneous problem employing generalized displacements. The dual reciprocity method is used to write the mass matrix in terms of boundary parameters only. The multidomain boundary element technique is implemented to model non-homogeneous and cracked configuration, unilateral interface conditions are also considered to prevent the physical inconsistence of the overlapping between interface nodes belonging to the crack surfaces. To assess the reliability and the effectiveness of the model numerical analyses are carried out on the modal and dynamic response of undamaged beam and results are compared with finite element calculations. Electrical response of piezoelectric sensors are then reported for different crack configurations in comparison with the undamaged case.
Applied Mechanics and Materials | 2016
Vincenzo Oliveri; Andrea Alaimo; Alberto Milazzo
A Rayleigh-Ritz approach for the analysis of buckling and post-buckling behavior of cracked composite stiffened plates is presented. The structure is modeled as the assembly of plate elements modeled by the first order shear deformation theory and taking geometric nonlinearities into account through the von Karman’s theory assumptions. Continuity along the plate elements connected edges and the enforcement of rigid and elastic restraints of the plate boundaries are obtained by using penalty techniques, which also allow to straightforwardly implement efficient crack modeling strategies. General symmetric and unsymmetric stacking sequences are considered and numerical procedures have been developed and used to validate the present solution by comparison with FEA results. Original results are presented for post-buckling solution of multilayered stiffened plates with through-the-thickness cracks, showing the effects of large displacements on the cracked plate post-buckling behavior.
Advanced Materials Research | 2012
Andrea Alaimo; Alberto Milazzo; Flavio Trentacosti; Antonio Esposito
In this paper a new bucket configuration for Savonius wind generator is proposed. With the aim to increase the effect of the overlap ratio RS on the wind turbine performances and to increase the amount of lift force able to produce torque and power, slotted blades are investigated by means of the Computational Fluid Dynamics analysis. The numerical analyses are performed by Comsol Multiphysics® and the results obtained for a Savonius wind turbine with overlap only are compared to numerical and experimental benchmarks. Parametric analyses are performed, for fixed overlap ratio, by varying the slot angle β and the results show that for low angle β the Savonius rotor exploits improved performance at low tip speed ratio λ, evidencing a better starting torque. This circumstance is confirmed by the static analyses performed on the slotted blades in order to investigate the starting characteristic of the proposed Savonius wing generator configuration.
Applied Mechanics and Materials | 2012
Andrea Alaimo; Alberto Milazzo; Calogero Orlando
Structural Health Monitoring (SHM) for composite materials is becoming a primary task due to their extended use in safety critical applications. Different methods, based on the use of piezoelectric transducers as well as of fiber optics, has been successfully proposed to detect and monitor damage in composite structural components with particular attention focused on delamination cracks.In the present paper a Structural Health Monitoring model, based on the use of piezoelectric sensors, already proposed by the authors for isotropic damaged components, is extended to delaminated composite structures. The dynamic behavior of the host damaged structure and the bonded piezoelectric sensors is modeled by means of a boundary element approach based on the Dual Reciprocity BEM. The sensitivity of the piezoelectric sensors has been studied by varying the delamination length characterizing the skin/stiffener debonding phenomenon of composite structures undergoing dynamic loads.
Applied Mechanics and Materials | 2012
Andrea Alaimo; Alberto Milazzo; Davide Tumino
In this paper a structural Finite Element analysis of a 50 ft pleasure vessel is presented. The study is performed under different loads conditions: modal analyses have been done in order to find the natural frequencies of the vessel, structural analyses to verify the strength of the vessel to design loads. The design loads for the vessel considered are computed according to RINA rules for the construction and classification of pleasure vessels [1]. Two different composites are used for the lamination: one is a monolithic sequence of short fibre and balanced glass lamina, used for the bottom of the vessel and for structural reinforcements, the other is a sandwich made of glass fibre composite skins and a PVC core, used for the main deck and sides of the vessel. All the analyses are performed by using Patran/Nastran™ finite element commercial software in order to identify critical areas where possible reinforcement or redesign needs to be considered.