Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Baccarelli is active.

Publication


Featured researches published by Andrea Baccarelli.


Environmental Health Perspectives | 2011

Inhalable metal-rich air particles and histone H3K4 dimethylation and H3K9 acetylation in a cross-sectional study of steel workers.

Laura Cantone; Francesco Nordio; Lifang Hou; Pietro Apostoli; Matteo Bonzini; Letizia Tarantini; Laura Angelici; Valentina Bollati; Antonella Zanobetti; Joel Schwartz; Pier Alberto Bertazzi; Andrea Baccarelli

Background: Epidemiology investigations have linked exposure to ambient and occupational air particulate matter (PM) with increased risk of lung cancer. PM contains carcinogenic and toxic metals, including arsenic and nickel, which have been shown in in vitro studies to induce histone modifications that activate gene expression by inducing open-chromatin states. Whether inhalation of metal components of PM induces histone modifications in human subjects is undetermined. Objectives: We investigated whether the metal components of PM determined activating histone modifications in 63 steel workers with well-characterized exposure to metal-rich PM. Methods: We determined histone 3 lysine 4 dimethylation (H3K4me2) and histone 3 lysine 9 acetylation (H3K9ac) on histones from blood leukocytes. Exposure to inhalable metal components (aluminum, manganese, nickel, zinc, arsenic, lead, iron) and to total PM was estimated for each study subject. Results: Both H3K4me2 and H3K9ac increased in association with years of employment in the plant (p-trend = 0.04 and 0.006, respectively). H3K4me2 increased in association with air levels of nickel [β = 0.16; 95% confidence interval (CI), 0.03–0.3], arsenic (β = 0.16; 95% CI, 0.02–0.3), and iron (β = 0.14; 95% CI, 0.01–0.26). H3K9ac showed nonsignificant positive associations with air levels of nickel (β = 0.24; 95% CI, –0.02 to 0.51), arsenic (β = 0.21; 95% CI, –0.06 to 0.48), and iron (β = 0.22; 95% CI, –0.03 to 0.47). Cumulative exposures to nickel and arsenic, defined as the product of years of employment by metal air levels, were positively correlated with both H3K4me2 (nickel: β = 0.16; 95% CI, 0.01–0.3; arsenic: β = 0.16; 95% CI, 0.03–0.29) and H3K9ac (nickel: β = 0.27; 95% CI, 0.01–0.54; arsenic: β = 0.28; 95% CI, 0.04–0.51). Conclusions: Our results indicate histone modifications as a novel epigenetic mechanism induced in human subjects by long-term exposure to inhalable nickel and arsenic.


Current Opinion in Pediatrics | 2009

Epigenetics and environmental chemicals

Andrea Baccarelli; Valentina Bollati

Purpose of review Epigenetics investigates heritable changes in gene expression occurring without changes in DNA sequence. Several epigenetic mechanisms, including DNA methylation, histone modifications, and microRNA expression, can change genome function under exogenous influence. Here, we review current evidence indicating that epigenetic alterations mediate toxicity from environmental chemicals. Recent findings In-vitro, animal, and human investigations have identified several classes of environmental chemicals that modify epigenetic marks, including metals (cadmium, arsenic, nickel, chromium, and methylmercury), peroxisome proliferators (trichloroethylene, dichloroacetic acid, and TCA), air pollutants (particulate matter, black carbon, and benzene), and endocrine-disrupting/reproductive toxicants (diethylstilbestrol, bisphenol A, persistent organic pollutants, and dioxin). Most studies conducted so far have been centered on DNA methylation, whereas only a few investigations have studied environmental chemicals in relation to histone modifications and microRNA. Summary For several exposures, it has been proved that chemicals can alter epigenetic marks, and that the same or similar epigenetic alterations can be found in patients with the disease of concern or in diseased tissues. Future prospective investigations are needed to determine whether exposed individuals develop epigenetic alterations over time and, in turn, which such alterations increase the risk of disease. Also, further research is needed to determine whether environmental epigenetic changes are transmitted transgenerationally.


Cancer Research | 2007

Changes in DNA Methylation Patterns in Subjects Exposed to Low-Dose Benzene

Valentina Bollati; Andrea Baccarelli; Lifang Hou; Matteo Bonzini; Silvia Fustinoni; Domenico Cavallo; Hyang-Min Byun; Jiayi Jiang; Barbara Marinelli; Angela Cecilia Pesatori; Pier Alberto Bertazzi; Allen S. Yang

Aberrant DNA methylation patterns, including global hypomethylation, gene-specific hypermethylation/hypomethylation, and loss of imprinting (LOI), are common in acute myelogenous leukemia (AML) and other cancer tissues. We investigated for the first time whether such epigenetic changes are induced in healthy subjects by low-level exposure to benzene, a widespread pollutant associated with AML risk. Blood DNA samples and exposure data were obtained from subjects with different levels of benzene exposure, including 78 gas station attendants, 77 traffic police officers, and 58 unexposed referents in Milan, Italy (personal airborne benzene range, < 6-478 microg/m(3)). Bisulfite-PCR pyrosequencing was used to quantitate DNA methylation in long interspersed nuclear element-1 (LINE-1) and AluI repetitive elements as a surrogate of genome-wide methylation and examine gene-specific methylation of MAGE-1 and p15. Allele-specific pyrosequencing of the H19 gene was used to detect LOI in 96 subjects heterozygous for the H19 imprinting center G/A single-nucleotide polymorphism. Airborne benzene was associated with a significant reduction in LINE-1 (-2.33% for a 10-fold increase in airborne benzene levels; P = 0.009) and AluI (-1.00%; P = 0.027) methylation. Hypermethylation in p15 (+0.35%; P = 0.018) and hypomethylation in MAGE-1 (-0.49%; P = 0.049) were associated with increasing airborne benzene levels. LOI was found only in exposed subjects (4 of 73, 5.5%) and not in referents (0 of 23, 0.0%). However, LOI was not significantly associated with airborne benzene (P > 0.20). This is the first human study to link altered DNA methylation, reproducing the aberrant epigenetic patterns found in malignant cells, to low-level carcinogen exposure.


American Journal of Respiratory and Critical Care Medicine | 2009

Rapid DNA methylation changes after exposure to traffic particles.

Andrea Baccarelli; Robert O. Wright; Valentina Bollati; Letizia Tarantini; Augusto A. Litonjua; Helen Suh; Antonella Zanobetti; David Sparrow; Pantel S. Vokonas; Joel Schwartz

RATIONALE Exposure to particulate air pollution has been related to increased hospitalization and death, particularly from cardiovascular disease. Lower blood DNA methylation content is found in processes related to cardiovascular outcomes, such as oxidative stress, aging, and atherosclerosis. OBJECTIVES We evaluated whether particulate pollution modifies DNA methylation in heavily methylated sequences with high representation throughout the human genome. METHODS We measured DNA methylation of long interspersed nucleotide element (LINE)-1 and Alu repetitive elements by quantitative polymerase chain reaction-pyrosequencing of 1,097 blood samples from 718 elderly participants in the Boston area Normative Aging Study. We used covariate-adjusted mixed models to account for within-subject correlation in repeated measures. We estimated the effects on DNA methylation of ambient particulate pollutants (black carbon, particulate matter with aerodynamic diameter < or = 2.5 microm [PM2.5], or sulfate) in multiple time windows (4 h to 7 d) before the examination. We estimated standardized regression coefficients (beta) expressing the fraction of a standard deviation change in DNA methylation associated with a standard deviation increase in exposure. MEASUREMENTS AND MAIN RESULTS Repetitive element DNA methylation varied in association with time-related variables, such as day of the week and season. LINE-1 methylation decreased after recent exposure to higher black carbon (beta = -0.11; 95% confidence interval [CI], -0.18 to -0.04; P = 0.002) and PM2.5 (beta = -0.13; 95% CI, -0.19 to -0.06; P < 0.001 for the 7-d moving average). In two-pollutant models, only black carbon, a tracer of traffic particles, was significantly associated with LINE-1 methylation (beta = -0.09; 95% CI, -0.17 to -0.01; P = 0.03). No association was found with Alu methylation (P > 0.12). CONCLUSIONS We found decreased repeated-element methylation after exposure to traffic particles. Whether decreased methylation mediates exposure-related health effects remains to be determined.


Genome Biology | 2015

DNA methylation age of blood predicts all-cause mortality in later life

Riccardo E. Marioni; Sonia Shah; Allan F. McRae; Brian H. Chen; Elena Colicino; Sarah E. Harris; Jude Gibson; Anjali K. Henders; Paul Redmond; Simon R. Cox; Alison Pattie; Janie Corley; Lee Murphy; Nicholas G. Martin; Grant W. Montgomery; Andrew P. Feinberg; M. Daniele Fallin; Michael L Multhaup; Andrew E. Jaffe; Roby Joehanes; Joel Schwartz; Allan C. Just; Kathryn L. Lunetta; Joanne M. Murabito; Steve Horvath; Andrea Baccarelli; Daniel Levy; Peter M. Visscher; Naomi R. Wray; Ian J. Deary

BackgroundDNA methylation levels change with age. Recent studies have identified biomarkers of chronological age based on DNA methylation levels. It is not yet known whether DNA methylation age captures aspects of biological age.ResultsHere we test whether differences between people’s chronological ages and estimated ages, DNA methylation age, predict all-cause mortality in later life. The difference between DNA methylation age and chronological age (Δage) was calculated in four longitudinal cohorts of older people. Meta-analysis of proportional hazards models from the four cohorts was used to determine the association between Δage and mortality. A 5-year higher Δage is associated with a 21% higher mortality risk, adjusting for age and sex. After further adjustments for childhood IQ, education, social class, hypertension, diabetes, cardiovascular disease, and APOE e4 status, there is a 16% increased mortality risk for those with a 5-year higher Δage. A pedigree-based heritability analysis of Δage was conducted in a separate cohort. The heritability of Δage was 0.43.ConclusionsDNA methylation-derived measures of accelerated aging are heritable traits that predict mortality independently of health status, lifestyle factors, and known genetic factors.


Environmental Health Perspectives | 2009

Effects of Particulate Matter on Genomic DNA Methylation Content and iNOS Promoter Methylation

Letizia Tarantini; Matteo Bonzini; Pietro Apostoli; Valeria Pegoraro; Valentina Bollati; Barbara Marinelli; Laura Cantone; Giovanna Rizzo; Lifang Hou; Joel Schwartz; Pier Alberto Bertazzi; Andrea Baccarelli

Background Altered patterns of gene expression mediate the effects of particulate matter (PM) on human health, but mechanisms through which PM modifies gene expression are largely undetermined. Objectives We aimed at identifying short- and long-term effects of PM exposure on DNA methylation, a major genomic mechanism of gene expression control, in workers in an electric furnace steel plant with well-characterized exposure to PM with aerodynamic diameters < 10 μm (PM10). Methods We measured global genomic DNA methylation content estimated in Alu and long interspersed nuclear element-1 (LINE-1) repeated elements, and promoter DNA methylation of iNOS (inducible nitric oxide synthase), a gene suppressed by DNA methylation and induced by PM exposure in blood leukocytes. Quantitative DNA methylation analysis was performed through bisulfite PCR pyrosequencing on blood DNA obtained from 63 workers on the first day of a work week (baseline, after 2 days off work) and after 3 days of work (postexposure). Individual PM10 exposure was between 73.4 and 1,220 μg/m3. Results Global methylation content estimated in Alu and LINE-1 repeated elements did not show changes in postexposure measures compared with baseline. PM10 exposure levels were negatively associated with methylation in both Alu [β = −0.19 %5-methylcytosine (%5mC); p = 0.04] and LINE-1 [β = −0.34 %5mC; p = 0.04], likely reflecting long-term PM10 effects. iNOS promoter DNA methylation was significantly lower in postexposure blood samples compared with baseline (difference = −0.61 %5mC; p = 0.02). Conclusions We observed changes in global and gene specific methylation that should be further characterized in future investigations on the effects of PM.


International Journal of Epidemiology | 2012

Environmental chemical exposures and human epigenetics

Lifang Hou; Xiao Zhang; Dong Wang; Andrea Baccarelli

Every year more than 13 million deaths worldwide are due to environmental pollutants, and approximately 24% of diseases are caused by environmental exposures that might be averted through preventive measures. Rapidly growing evidence has linked environmental pollutants with epigenetic variations, including changes in DNA methylation, histone modifications and microRNAs. Environ mental chemicals and epigenetic changes All of these mechanisms are likely to play important roles in disease aetiology, and their modifications due to environmental pollutants might provide further understanding of disease aetiology, as well as biomarkers reflecting exposures to environmental pollutants and/or predicting the risk of future disease. We summarize the findings on epigenetic alterations related to environmental chemical exposures, and propose mechanisms of action by means of which the exposures may cause such epigenetic changes. We discuss opportunities, challenges and future directions for future epidemiology research in environmental epigenomics. Future investigations are needed to solve methodological and practical challenges, including uncertainties about stability over time of epigenomic changes induced by the environment, tissue specificity of epigenetic alterations, validation of laboratory methods, and adaptation of bioinformatic and biostatistical methods to high-throughput epigenomics. In addition, there are numerous reports of epigenetic modifications arising following exposure to environmental toxicants, but most have not been directly linked to disease endpoints. To complete our discussion, we also briefly summarize the diseases that have been linked to environmental chemicals-related epigenetic changes.


Environmental Health Perspectives | 2008

Global DNA hypomethylation is associated with high serum-persistent organic pollutants in Greenlandic Inuit.

Jennifer A. Rusiecki; Andrea Baccarelli; Valentina Bollati; Letizia Tarantini; Lee E. Moore; Eva Cecilie Bonefeld-Jørgensen

Background Persistent organic pollutants (POPs) may influence epigenetic mechanisms; therefore, they could affect chromosomal stability and gene expression. DNA methylation, an epigenetic mechanism, has been associated with cancer initiation and progression. Greenlandic Inuit have some of the highest reported POP levels worldwide. Objective Our aim in this study was to evaluate the relationship between plasma POPs concentrations and global DNA methylation (percent 5-methylcytosine) in DNA extracted from blood samples from 70 Greenlandic Inuit. Blood samples were collected under the Arctic Monitoring and Assessment Program and previously analyzed for a battery of POPs. Methods We used pyrosequencing to estimate global DNA methylation via Alu and LINE-1 assays of bisulfite-treated DNA. We investigated correlations between plasma POP concentrations and global DNA methylation via correlation coefficients and linear regression analyses. Results We found inverse correlations between percents methylcytosine and many of the POP concentrations measured. Linear regressions, adjusting for age and cigarette smoking, showed statistically significant inverse linear relationships mainly for the Alu assay for p,p′-DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane; β = −0.26), p,p′-DDE [1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene; β = −0.38], β-hexachlorocyclohexane (β = −0.48), oxychlordane (β = −0.32), α-chlordane (β = −0.75), mirex (β = −0.27), sum of polychlorinated biphenyls (β = −0.56), and sum of all POPs (β = −0.48). Linear regressions for the LINE-1 assay showed β estimates of similar magnitudes to those using the Alu assay, however, none was statistically significant. Conclusions This is the first study to investigate environmental exposure to POPs and DNA methylation levels in a human population. Global methylation levels were inversely associated with blood plasma levels for several POPs and merit further investigation.


Epidemiology | 2010

Ischemic heart disease and stroke in relation to blood DNA methylation

Andrea Baccarelli; Robert O. Wright; Valentina Bollati; Augusto A. Litonjua; Antonella Zanobetti; Letizia Tarantini; David Sparrow; Pantel S. Vokonas; Joel Schwartz

Background: Epigenetic features such as DNA hypomethylation have been associated with conditions related to cardiovascular risk. We evaluated whether lower blood DNA methylation in heavily methylated repetitive sequences predicts the risk of ischemic heart disease and stroke. Methods: We quantified blood DNA methylation of Long Interspersed Nucleotide Element-1 (LINE-1) repetitive elements through PCR-pyrosequencing in 712 elderly individuals from the Boston-area Normative Aging Study. We estimated risk-factor adjusted relative risks (RRs) for ischemic heart disease and stroke at baseline (242 prevalent cases), and during follow-up (44 new cases; median follow-up, 63 months), as well as subsequent mortality from ischemic heart disease (86 deaths; median follow-up, 75 months). Results: Blood LINE-1 hypomethylation was associated with baseline ischemic heart disease (RR = 2.1 [95% confidence interval = 1.2-4.0] for lowest vs. highest methylation quartile) and for stroke (2.5 [0.9-7.5]). Among participants free of baseline disease, individuals with methylation below the median also had higher risk of developing ischemic heart disease (4.0 [1.8-8.9]) or stroke (5.7 [0.8-39.5]). In the entire cohort, persons with methylation below the median had higher mortality from ischemic heart disease (3.3 [1.3-8.4]) and stroke (2.8 [0.6-14.3]). Total mortality was also increased (2.0 [1.2-3.3]). These results were confirmed in additional regression models using LINE-1 methylation as a continuous variable. Conclusions: Subjects with prevalent IHD and stroke exhibited lower LINE-1 methylation. In longitudinal analyses, persons with lower LINE-1 methylation were at higher risk for incident ischemic heart disease and stroke, and for total mortality.


European Heart Journal | 2015

Expert position paper on air pollution and cardiovascular disease

David E. Newby; Pier Mannuccio Mannucci; Grethe S. Tell; Andrea Baccarelli; Robert D. Brook; Ken Donaldson; Francesco Forastiere; Massimo Franchini; Oscar H. Franco; Ian Graham; Gerard Hoek; Barbara Hoffmann; Marc Hoylaerts; Nino Künzli; Nicholas L. Mills; Juha Pekkanen; Annette Peters; Massimo F. Piepoli; Sanjay Rajagopalan; Robert F. Storey

Air pollution has wide-ranging and deleterious effects on human health and is a major issue for the global community. The Global Burden of Disease study has described the worldwide impact of air pollution with as many as 3.1 million of 52.8 million all-cause and all-age deaths being attributable to ambient air pollution in the year 2010.1 Moreover, ambient air pollution ranked ninth among the modifiable disease risk factors, being listed above other commonly recognized factors, such as low physical activity, a high-sodium diet, high cholesterol, and drug use. Finally, air pollution accounts for 3.1% of global disability-adjusted life years, an index that measures the time spent in states of reduced health.1 Although it is intuitive that air pollution is an important stimulus for the development and exacerbation of respiratory diseases, such as asthma, chronic obstructive pulmonary disease, and lung cancer, there is generally less public awareness of its substantial impact on cardiovascular disease. Historically, the 1952 Great Smog of London led to an increase in cardiovascular death as well as deaths due to respiratory disease. Subsequent studies in the 1990s, such as the Harvard Six Cities2 and American Cancer Society cohort studies,2,3 established an enduring positive association between long-term exposure to air pollution and total and cardiovascular mortality, mainly due to coronary artery disease.4 In Europe, the first study that supported this association between long-term exposure and mortality was the Netherlands Cohort Study on Diet and Cancer.5 Associations with cardiovascular morbidity and mortality are also seen with short-term (e.g. day-to-day fluctuations) pollutant exposures of residents in large urban areas worldwide, including the United States of America6 …

Collaboration


Dive into the Andrea Baccarelli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lifang Hou

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert O. Wright

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allan C. Just

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge