Andrea Bamberg Migliano
University College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrea Bamberg Migliano.
Science | 2011
Morten Rasmussen; Xiaosen Guo; Yong Wang; Kirk E. Lohmueller; Simon Rasmussen; Anders Albrechtsen; Line Skotte; Stinus Lindgreen; Mait Metspalu; Thibaut Jombart; Toomas Kivisild; Weiwei Zhai; Anders Eriksson; Andrea Manica; Ludovic Orlando; Francisco M. De La Vega; Silvana R. Tridico; Ene Metspalu; Kasper Nielsen; María C. Ávila-Arcos; J. Víctor Moreno-Mayar; Craig Muller; Joe Dortch; M. Thomas P. Gilbert; Ole Lund; Agata Wesolowska; Monika Karmin; Lucy A. Weinert; Bo Wang; Jun Li
Whole-genome data indicate that early modern humans expanded into Australia 62,000 to 75,000 years ago. We present an Aboriginal Australian genomic sequence obtained from a 100-year-old lock of hair donated by an Aboriginal man from southern Western Australia in the early 20th century. We detect no evidence of European admixture and estimate contamination levels to be below 0.5%. We show that Aboriginal Australians are descendants of an early human dispersal into eastern Asia, possibly 62,000 to 75,000 years ago. This dispersal is separate from the one that gave rise to modern Asians 25,000 to 38,000 years ago. We also find evidence of gene flow between populations of the two dispersal waves prior to the divergence of Native Americans from modern Asian ancestors. Our findings support the hypothesis that present-day Aboriginal Australians descend from the earliest humans to occupy Australia, likely representing one of the oldest continuous populations outside Africa.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Andrea Bamberg Migliano; Lucio Vinicius; Marta Mirazón Lahr
Explanations for the evolution of human pygmies continue to be a matter of controversy, recently fuelled by the disagreements surrounding the interpretation of the fossil hominin Homo floresiensis. Traditional hypotheses assume that the small body size of human pygmies is an adaptation to special challenges, such as thermoregulation, locomotion in dense forests, or endurance against starvation. Here, we present an analysis of stature, growth, and individual fitness for a large population of Aeta and a smaller one of Batak from the Philippines and compare it with data on other pygmy groups accumulated by anthropologists for a century. The results challenge traditional explanations of human pygmy body size. We argue that human pygmy populations and adaptations evolved independently as the result of a life history tradeoff between the fertility benefits of larger body size against the costs of late growth cessation, under circumstances of significant young and adult mortality. Human pygmies do not appear to have evolved through positive selection for small stature—this was a by-product of selection for early onset of reproduction.
Genome Research | 2015
Monika Karmin; Lauri Saag; Mário Vicente; Melissa A. Wilson Sayres; Mari Järve; Ulvi Gerst Talas; Siiri Rootsi; Anne-Mai Ilumäe; Reedik Mägi; Mario Mitt; Luca Pagani; Tarmo Puurand; Zuzana Faltyskova; Florian Clemente; Alexia Cardona; Ene Metspalu; Hovhannes Sahakyan; Bayazit Yunusbayev; Georgi Hudjashov; Michael DeGiorgio; Eva-Liis Loogväli; Christina A. Eichstaedt; Mikk Eelmets; Gyaneshwer Chaubey; Kristiina Tambets; S. S. Litvinov; Maru Mormina; Yali Xue; Qasim Ayub; Grigor Zoraqi
It is commonly thought that human genetic diversity in non-African populations was shaped primarily by an out-of-Africa dispersal 50-100 thousand yr ago (kya). Here, we present a study of 456 geographically diverse high-coverage Y chromosome sequences, including 299 newly reported samples. Applying ancient DNA calibration, we date the Y-chromosomal most recent common ancestor (MRCA) in Africa at 254 (95% CI 192-307) kya and detect a cluster of major non-African founder haplogroups in a narrow time interval at 47-52 kya, consistent with a rapid initial colonization model of Eurasia and Oceania after the out-of-Africa bottleneck. In contrast to demographic reconstructions based on mtDNA, we infer a second strong bottleneck in Y-chromosome lineages dating to the last 10 ky. We hypothesize that this bottleneck is caused by cultural changes affecting variance of reproductive success among males.
Nature | 2016
Luca Pagani; Daniel John Lawson; Evelyn Jagoda; Alexander Mörseburg; Anders Eriksson; Mario Mitt; Florian Clemente; Georgi Hudjashov; Michael DeGiorgio; Lauri Saag; Jeffrey D. Wall; Alexia Cardona; Reedik Mägi; Melissa A. Wilson Sayres; Sarah Kaewert; Charlotte E. Inchley; Christiana L. Scheib; Mari Järve; Monika Karmin; Guy S. Jacobs; Tiago Antao; Florin Mircea Iliescu; Alena Kushniarevich; Qasim Ayub; Chris Tyler-Smith; Yali Xue; Bayazit Yunusbayev; Kristiina Tambets; Chandana Basu Mallick; Lehti Saag
High-coverage whole-genome sequence studies have so far focused on a limited number of geographically restricted populations, or been targeted at specific diseases, such as cancer. Nevertheless, the availability of high-resolution genomic data has led to the development of new methodologies for inferring population history and refuelled the debate on the mutation rate in humans. Here we present the Estonian Biocentre Human Genome Diversity Panel (EGDP), a dataset of 483 high-coverage human genomes from 148 populations worldwide, including 379 new genomes from 125 populations, which we group into diversity and selection sets. We analyse this dataset to refine estimates of continent-wide patterns of heterozygosity, long- and short-distance gene flow, archaic admixture, and changes in effective population size through time as well as for signals of positive or balancing selection. We find a genetic signature in present-day Papuans that suggests that at least 2% of their genome originates from an early and largely extinct expansion of anatomically modern humans (AMHs) out of Africa. Together with evidence from the western Asian fossil record, and admixture between AMHs and Neanderthals predating the main Eurasian expansion, our results contribute to the mounting evidence for the presence of AMHs out of Africa earlier than 75,000 years ago.
Nature | 2016
Anna-Sapfo Malaspinas; Michael C. Westaway; Craig Muller; Vitor C. Sousa; Oscar Lao; Isabel Alves; Anders Bergström; Georgios Athanasiadis; Jade Y. Cheng; Jacob E. Crawford; Tim Hermanus Heupink; Enrico Macholdt; Stephan Peischl; Simon Rasmussen; Stephan Schiffels; Sankar Subramanian; Joanne L. Wright; Anders Albrechtsen; Chiara Barbieri; Isabelle Dupanloup; Anders Eriksson; Ashot Margaryan; Ida Moltke; Irina Pugach; Thorfinn Sand Korneliussen; Ivan P. Levkivskyi; J. Víctor Moreno-Mayar; Shengyu Ni; Fernando Racimo; Martin Sikora
The population history of Aboriginal Australians remains largely uncharacterized. Here we generate high-coverage genomes for 83 Aboriginal Australians (speakers of Pama–Nyungan languages) and 25 Papuans from the New Guinea Highlands. We find that Papuan and Aboriginal Australian ancestors diversified 25–40 thousand years ago (kya), suggesting pre-Holocene population structure in the ancient continent of Sahul (Australia, New Guinea and Tasmania). However, all of the studied Aboriginal Australians descend from a single founding population that differentiated ~10–32 kya. We infer a population expansion in northeast Australia during the Holocene epoch (past 10,000 years) associated with limited gene flow from this region to the rest of Australia, consistent with the spread of the Pama–Nyungan languages. We estimate that Aboriginal Australians and Papuans diverged from Eurasians 51–72 kya, following a single out-of-Africa dispersal, and subsequently admixed with archaic populations. Finally, we report evidence of selection in Aboriginal Australians potentially associated with living in the desert.
Science | 2015
Mark Dyble; Gul Deniz Salali; Nikhil Chaudhary; Abigail E. Page; Daniel Smith; James Thompson; Lucio Vinicius; Ruth Mace; Andrea Bamberg Migliano
Friends and family? Evolutionary theory stresses the importance of living with kin, not least because they share some of our genes. Nevertheless, a large-scale assessment of contemporary hunter-gatherer societies has established a consistent pattern of unrelated individuals living together. Dyble et al. used a modeling approach to suggest that a possible answer to this conundrum is that cohabitation choices are being governed equally by men and women. Science, this issue p. 796 As human societies evolved, modeling reveals that allowing both males and females to choose camp members reduces relatedness. The social organization of mobile hunter-gatherers has several derived features, including low within-camp relatedness and fluid meta-groups. Although these features have been proposed to have provided the selective context for the evolution of human hypercooperation and cumulative culture, how such a distinctive social system may have emerged remains unclear. We present an agent-based model suggesting that, even if all individuals in a community seek to live with as many kin as possible, within-camp relatedness is reduced if men and women have equal influence in selecting camp members. Our model closely approximates observed patterns of co-residence among Agta and Mbendjele BaYaka hunter-gatherers. Our results suggest that pair-bonding and increased sex egalitarianism in human evolutionary history may have had a transformative effect on human social organization.
PLOS ONE | 2016
Jesús Olivero; John E. Fa; Miguel Angel Farfán; Jerome Lewis; Barry S. Hewlett; Thomas Breuer; Giuseppe M. Carpaneto; Maria Luz Fernandez; Francesco Germi; Shiho Hattori; Josephine Head; Mitsuo Ichikawa; Koichi Kitanaishi; Jessica Knights; Naoki Matsuura; Andrea Bamberg Migliano; Barbara Nese; Andrew J. Noss; Dieudonné Ongbwa Ekoumou; Pascale Paulin; Raimundo Real; Mike Riddell; Edward Geoffrey Jedediah Stevenson; Mikako Toda; J. Mario Vargas; Hirokazu Yasuoka; Robert Nasi
Pygmy populations occupy a vast territory extending west-to-east along the central African belt from the Congo Basin to Lake Victoria. However, their numbers and actual distribution is not known precisely. Here, we undertake this task by using locational data and population sizes for an unprecedented number of known Pygmy camps and settlements (n = 654) in five of the nine countries where currently distributed. With these data we develop spatial distribution models based on the favourability function, which distinguish areas with favourable environmental conditions from those less suitable for Pygmy presence. Highly favourable areas were significantly explained by presence of tropical forests, and by lower human pressure variables. For documented Pygmy settlements, we use the relationship between observed population sizes and predicted favourability values to estimate the total Pygmy population throughout Central Africa. We estimate that around 920,000 Pygmies (over 60% in DRC) is possible within favourable forest areas in Central Africa. We argue that fragmentation of the existing Pygmy populations, alongside pressure from extractive industries and sometimes conflict with conservation areas, endanger their future. There is an urgent need to inform policies that can mitigate against future external threats to these indigenous peoples’ culture and lifestyles.
Nature Communications | 2014
Hannah M. Lewis; Lucio Vinicius; Janis Strods; Ruth Mace; Andrea Bamberg Migliano
‘Simple’ hunter-gatherer populations adopt the social norm of ‘demand sharing’, an example of human hyper-cooperation whereby food brought into camps is claimed and divided by group members. Explaining how demand sharing evolved without punishment to free riders, who rarely hunt but receive resources from active hunters, has been a long-standing problem. Here we show through a simulation model that demand-sharing families that continuously move between camps in response to their energy income are able to survive in unpredictable environments typical of hunter-gatherers, while non-sharing families and sedentary families perish. Our model also predicts that non-producers (free riders, pre-adults and post-productive adults) can be sustained in relatively high numbers. As most of hominin pre-history evolved in hunter-gatherer settings, demand sharing may be an ancestral manifestation of hyper-cooperation and inequality aversion, allowing exploration of high-quality, hard-to-acquire resources, the evolution of fluid co-residence patterns and egalitarian resource distribution in the absence of punishment or warfare.
Current Anthropology | 2009
Jay T. Stock; Andrea Bamberg Migliano
Despite considerable interest in the evolution of small body size, there is little evidence for changes in body size within small‐bodied human populations. This study combines anthropometric data from a number of studies of the body size of Andaman Islanders from 1871 to 1986. The colonial history of the Andaman Islands is characterized by high rates of mortality among the indigenous populations. However, long‐term conflicts between tribal groups of the Andaman Islands and British and Indian settlers led to some groups being relatively isolated and sheltered from infectious disease and the high rates of mortality that affected other groups. When temporal trends in stature are compared in this context, there is evidence for a reduction in stature among the Great Andamanese who had close contact with the British during the period of highest mortality. Adult stature among the Onge appears to have increased as government involvement diminished following Indian independence. The Jarawa, who had lower rates of mortality throughout the past century, have significantly higher stature than the other groups. These results are interpreted in the context of life‐history theory, adaptation, and plasticity. They provide the first long‐term diachronic evidence for a relationship between mortality and stature among small‐bodied humans.
Current Anthropology | 2012
Andrea Bamberg Migliano; Myrtille Guillon
The increase in body size observed with the appearance and evolution of Homo is most often attributed to thermoregulatory and locomotor adaptations to environment; increased reliance on animal protein and fat; or increased behavioral flexibility, provisioning, and cooperation leading to decreased mortality rates and slow life histories. It is not easy to test these hypotheses in the fossil record. Therefore, understanding selective pressures shaping height variability in living humans might help to construct models for the interpretation of body size variation in the hominins. Among human populations, average male height varies extensively (145 cm–183 cm); a similar range of variation is found in Homo erectus (including African and Georgian samples). Previous research shows that height in human populations covaries with life history traits and variations in mortality rates and that different environments affect adult height through adaptations related to thermoregulation and nutrition. We investigate the interactions between life history traits, mortality rates, environmental setting, and subsistence for 89 small-scale societies. We show that mortality rates are the primary factor shaping adult height variation and that people in savanna are consistently taller than people in forests. We focus on relevant results for interpreting the evolution of Homo body size variability.