Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Benucci is active.

Publication


Featured researches published by Andrea Benucci.


Neuron | 2009

Local Origin of Field Potentials in Visual Cortex

Steffen Katzner; Ian Nauhaus; Andrea Benucci; Vincent Bonin; Dario L. Ringach; Matteo Carandini

The local field potential (LFP) is increasingly used to measure the combined activity of neurons within a region of tissue. Yet, available estimates of the size of this region are highly disparate, ranging from several hundred microns to a few millimeters. To measure the size of this region directly, we used a combination of multielectrode recordings and optical imaging. We determined the orientation selectivity of stimulus-evoked LFP signals in primary visual cortex and were able to predict it on the basis of the surrounding map of orientation preference. The results show that > 95% of the LFP signal originates within 250 microm of the recording electrode. This quantitative estimate indicates that LFPs are more local than often recognized and provides a guide to the interpretation of the increasing number of studies that rest on LFP recordings.


Nature | 2012

Restoration of vision after transplantation of photoreceptors

Rachael A. Pearson; Amanda C. Barber; Matteo Rizzi; Claire Hippert; Tian Xue; Emma L. West; Yanai Duran; Anthony J. Smith; J. Z. Chuang; S A Sultana Azam; Ulrich F.O. Luhmann; Andrea Benucci; Choon Ho Sung; James W. Bainbridge; Matteo Carandini; King Wai Yau; Jane C. Sowden; Robin R. Ali

Cell transplantation is a potential strategy for treating blindness caused by the loss of photoreceptors. Although transplanted rod-precursor cells are able to migrate into the adult retina and differentiate to acquire the specialized morphological features of mature photoreceptor cells, the fundamental question remains whether transplantation of photoreceptor cells can actually improve vision. Here we provide evidence of functional rod-mediated vision after photoreceptor transplantation in adult Gnat1−/− mice, which lack rod function and are a model of congenital stationary night blindness. We show that transplanted rod precursors form classic triad synaptic connections with second-order bipolar and horizontal cells in the recipient retina. The newly integrated photoreceptor cells are light-responsive with dim-flash kinetics similar to adult wild-type photoreceptors. By using intrinsic imaging under scotopic conditions we demonstrate that visual signals generated by transplanted rods are projected to higher visual areas, including V1. Moreover, these cells are capable of driving optokinetic head tracking and visually guided behaviour in the Gnat1−/− mouse under scotopic conditions. Together, these results demonstrate the feasibility of photoreceptor transplantation as a therapeutic strategy for restoring vision after retinal degeneration.


Neuron | 2015

Transgenic Mice for Intersectional Targeting of Neural Sensors and Effectors with High Specificity and Performance

Linda Madisen; Aleena R. Garner; Daisuke Shimaoka; Amy S. Chuong; Nathan Cao Klapoetke; Lu Li; Alexander van der Bourg; Yusuke Niino; Ladan Egolf; Claudio Monetti; Hong Gu; Maya Mills; Adrian Cheng; Bosiljka Tasic; Thuc Nghi Nguyen; Susan M. Sunkin; Andrea Benucci; Andras Nagy; Atsushi Miyawaki; Fritjof Helmchen; Ruth M. Empson; Thomas Knöpfel; Edward S. Boyden; R. Clay Reid; Matteo Carandini; Hongkui Zeng

UNLABELLED An increasingly powerful approach for studying brain circuits relies on targeting genetically encoded sensors and effectors to specific cell types. However, current approaches for this are still limited in functionality and specificity. Here we utilize several intersectional strategies to generate multiple transgenic mouse lines expressing high levels of novel genetic tools with high specificity. We developed driver and double reporter mouse lines and viral vectors using the Cre/Flp and Cre/Dre double recombinase systems and established a new, retargetable genomic locus, TIGRE, which allowed the generation of a large set of Cre/tTA-dependent reporter lines expressing fluorescent proteins, genetically encoded calcium, voltage, or glutamate indicators, and optogenetic effectors, all at substantially higher levels than before. High functionality was shown in example mouse lines for GCaMP6, YCX2.60, VSFP Butterfly 1.2, and Jaws. These novel transgenic lines greatly expand the ability to monitor and manipulate neuronal activities with increased specificity. VIDEO ABSTRACT


Neuron | 2007

Standing waves and traveling waves distinguish two circuits in visual cortex

Andrea Benucci; Robert A. Frazor; Matteo Carandini

The visual cortex represents stimuli through the activity of neuronal populations. We measured the evolution of this activity in space and time by imaging voltage-sensitive dyes in cat area V1. Contrast-reversing stimuli elicit responses that oscillate at twice the stimulus frequency, indicating that signals originate mostly in complex cells. These responses stand clear of the noise, whose amplitude decreases as 1/frequency, and yield high-resolution maps of orientation preference and retinotopy. We first show how these maps are combined to yield the responses to focal, oriented stimuli. We then study the evolution of the oscillating activity in space and time. In the orientation domain, it is a standing wave. In the spatial domain, it is a traveling wave propagating at 0.2-0.5 m/s. These different dynamics indicate a fundamental distinction in the circuits underlying selectivity for position and orientation, two key stimulus attributes.


The Journal of Neuroscience | 2015

Cortical State Determines Global Variability and Correlations in Visual Cortex

Marieke L. Schölvinck; Aman B Saleem; Andrea Benucci; Kenneth Harris; Matteo Carandini

The response of neurons in sensory cortex to repeated stimulus presentations is highly variable. To investigate the nature of this variability, we compared the spike activity of neurons in the primary visual cortex (V1) of cats with that of their afferents from lateral geniculate nucleus (LGN), in response to similar stimuli. We found variability to be much higher in V1 than in LGN. To investigate the sources of the additional variability, we measured the spiking activity of large V1 populations and found that much of the variability was shared across neurons: the variable portion of the responses of one neuron could be well predicted from the summed activity of the rest of the neurons. Variability thus mostly reflected global fluctuations affecting all neurons. The size and prevalence of these fluctuations, both in responses to stimuli and in ongoing activity, depended on cortical state, being larger in synchronized states than in more desynchronized states. Contrary to previous reports, these fluctuations invested the overall population, regardless of preferred orientation. The global fluctuations substantially increased variability in single neurons and correlations among pairs of neurons. Once this effect was removed, pairwise correlations were reduced and were similar regardless of cortical state. These results highlight the importance of cortical state in controlling cortical operation and can help reconcile previous studies, which differed widely in their estimate of neuronal variability and pairwise correlations.


Neuron | 2008

Neuronal selectivity and local map structure in visual cortex

Ian Nauhaus; Andrea Benucci; Matteo Carandini; Dario L. Ringach

The organization of primary visual cortex (V1) into functional maps makes individual cells operate in a variety of contexts. For instance, some neurons lie in regions of fairly homogeneous orientation preference (iso-orientation domains), while others lie in regions with a variety of preferences (e.g., pinwheel centers). We asked whether this diversity in local map structure correlates with the degree of selectivity of spike responses. We used a combination of imaging and electrophysiology to reveal that neurons in regions of homogeneous orientation preference have much sharper tuning. Moreover, in both monkeys and cats, a common principle links the structure of the orientation map, on the spatial scale of dendritic integration, to the degree of selectivity of individual cells. We conclude that neural computation is not invariant across the cortical surface. This finding must factor into future theories of receptive field wiring and map development.


Nature Neuroscience | 2013

Adaptation maintains population homeostasis in primary visual cortex

Andrea Benucci; Aman B Saleem; Matteo Carandini

Sensory systems exhibit mechanisms of neural adaptation, which adjust neuronal activity on the basis of recent stimulus history. In primary visual cortex (V1) in particular, adaptation controls the responsiveness of individual neurons and shifts their visual selectivity. What benefits does adaptation confer on a neuronal population? We measured adaptation in the responses of populations of cat V1 neurons to stimulus ensembles with markedly different statistics of stimulus orientation. We found that adaptation served two homeostatic goals. First, it maintained equality in the time-averaged responses across the population. Second, it maintained independence in selectivity across the population. Adaptation scaled and distorted population activity according to a simple multiplicative rule that depended on neuronal orientation preference and on stimulus orientation. We conclude that adaptation in V1 acts as a mechanism of homeostasis, enforcing a tendency toward equality and independence in neural activity across the population.


The Journal of Neuroscience | 2015

Imaging the Awake Visual Cortex with a Genetically Encoded Voltage Indicator

Matteo Carandini; Daisuke Shimaoka; Lf Rossi; Tk Sato; Andrea Benucci; Thomas Knöpfel

Genetically encoded voltage indicators (GEVIs) promise to reveal the membrane potential of genetically targeted neuronal populations through noninvasive, chronic imaging of large portions of cortical space. Here we test a promising GEVI in mouse cortex during wakefulness, a challenging condition due to large hemodynamic activity, and we introduce a straightforward projection method to separate a signal dominated by membrane voltage from a signal dominated by hemodynamic activity. We expressed VSFP-Butterfly 1.2 plasmid in layer 2/3 pyramidal cells of visual cortex through electroporation in utero. We then used wide-field imaging with two cameras to measure both fluorophores of the indicator in response to visual stimuli. By taking weighted sums and differences of the two measurements, we obtained clear separation of hemodynamic and voltage signals. The hemodynamic signal showed strong heartbeat oscillations, superimposed on slow dynamics similar to blood oxygen level-dependent (BOLD) or “intrinsic” signals. The voltage signal had fast dynamics similar to neural responses measured electrically, and showed an orderly retinotopic mapping. We compared this voltage signal with calcium signals imaged in transgenic mice that express a calcium indicator (GCaMP3) throughout cortex. The voltage signal from VSFP had similar signal-to-noise ratios as the calcium signal, it was more immune to vascular artifacts, and it integrated over larger regions of visual space, which was consistent with its reporting mostly subthreshold activity rather than the spiking activity revealed by calcium signals. These results demonstrate that GEVIs provide a powerful tool to study the dynamics of neural populations at mesoscopic spatial scales in the awake cortex.


Nature Neuroscience | 2009

Coding of stimulus sequences by population responses in visual cortex

Andrea Benucci; Dario L. Ringach; Matteo Carandini

Neuronal populations in sensory cortex represent time-changing sensory input through a spatiotemporal code. What are the rules that govern this code? We measured membrane potentials and spikes from neuronal populations in cat visual cortex (V1) using voltage-sensitive dyes and electrode arrays. We first characterized the population response to a single orientation. As response amplitude grew, the population tuning width remained constant for membrane potential responses and became progressively sharper for spike responses. We then asked how these single-orientation responses combine to code for successive orientations. We found that they combined through simple linear summation. Linearity, however, was violated after stimulus offset, when responses exhibited an unexplained persistence. As a result of linearity, the interactions between responses to successive stimuli were minimal. Our results indicate that higher cortical areas may reconstruct the stimulus sequence from V1 population responses through a simple instantaneous decoder. Therefore, spatial and temporal codes in area V1 operate largely independently.


The Journal of Neuroscience | 2013

Fast Hemodynamic Responses in the Visual Cortex of the Awake Mouse

Pisauro Ma; Dhruv Nt; Matteo Carandini; Andrea Benucci

Hemodynamic responses in mice and other species are typically measured under anesthesia. However, anesthesia could influence their relationship to neural activity. To investigate this relationship, we used optical imaging in mouse primary visual cortex (V1). Hemodynamic responses yielded clear maps of retinotopy in both anesthetized and awake mice. However, during wakefulness, responses were four times larger and twice as fast. These differences held whether we induced anesthesia with urethane or isoflurane and whether awake mice were stationary or running on a treadmill. With electrode recordings, we established that the effects of wakefulness reflect changes in neurovascular coupling, not in neural activity. By activating V1 directly via optogenetics, we replicated the effects of wakefulness in terms of timing but not of amplitude. We conclude that neurovascular coupling depends critically on anesthesia and wakefulness: during wakefulness, neural activity is followed by much stronger and quicker hemodynamic responses.

Collaboration


Dive into the Andrea Benucci's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert A. Frazor

Smith-Kettlewell Institute

View shared research outputs
Top Co-Authors

Avatar

Peter König

University of Osnabrück

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian Nauhaus

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daisuke Shimaoka

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge