Andrea Betz
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrea Betz.
Cell | 2002
Jeong-Seop Rhee; Andrea Betz; Sonja Pyott; Kerstin Reim; Frederique Varoqueaux; Iris Augustin; Dörte Hesse; Thomas C. Südhof; Masami Takahashi; Christian Rosenmund; Nils Brose
Munc13-1 is a presynaptic protein with an essential role in synaptic vesicle priming. It contains a diacylglycerol (DAG)/beta phorbol ester binding C(1) domain and is a potential target of the DAG second messenger pathway that may act in parallel with PKCs. Using genetically modified mice that express a DAG/beta phorbol ester binding-deficient Munc13-1(H567K) variant instead of the wild-type protein, we determined the relative contribution of PKCs and Munc13-1 to DAG/beta phorbol ester-dependent regulation of neurotransmitter release. We show that Munc13s are the main presynaptic DAG/beta phorbol ester receptors in hippocampal neurons. Modulation of Munc13-1 activity by second messengers via the DAG/beta phorbol ester binding C(1) domain is essential for use-dependent alterations of synaptic efficacy and survival.
Neuron | 1998
Andrea Betz; Uri Ashery; Michael Rickmann; Iris Augustin; Erwin Neher; Thomas C. Südhof; Jens Rettig; Nils Brose
Munc13-1, a mammalian homolog of C. elegans unc-13p, is thought to be involved in the regulation of synaptic transmission. We now demonstrate that Munc13-1 is a presynaptic high-affinity phorbol ester and diacylglycerol receptor with ligand affinities similar to those of protein kinase C. Munc13-1 associates with the plasma membrane in response to phorbol ester binding and acts as a phorbol ester-dependent enhancer of transmitter release when overexpressed presynaptically in the Xenopus neuromuscular junction. These observations establish Munc13-1 as a novel presynaptic target of the diacylglycerol second messenger pathway that acts in parallel with protein kinase C to regulate neurotransmitter secretion.
Neuron | 2001
Andrea Betz; Pratima Thakur; Harald J. Junge; Uri Ashery; Jeong-Seop Rhee; Volker Scheuss; Christian Rosenmund; Jens Rettig; Nils Brose
Synaptic neurotransmitter release is restricted to active zones, where the processes of synaptic vesicle tethering, priming to fusion competence, and Ca2+-triggered fusion are taking place in a highly coordinated manner. We show that the active zone components Munc13-1, an essential vesicle priming protein, and RIM1, a Rab3 effector with a putative role in vesicle tethering, interact functionally. Disruption of this interaction causes a loss of fusion-competent synaptic vesicles, creating a phenocopy of Munc13-1-deficient neurons. RIM1 binding and vesicle priming are mediated by two distinct structural modules of Munc13-1. The Munc13-1/RIM1 interaction may create a functional link between synaptic vesicle tethering and priming, or it may regulate the priming reaction itself, thereby determining the number of fusion-competent vesicles.
Journal of Biological Chemistry | 1997
Andrea Betz; Masaya Okamoto; Fritz Benseler; Nils Brose
unc-13 mutants in Caenorhabditis elegans are characterized by a severe deficit in neurotransmitter release. Their phenotype is similar to that of the C. elegans unc-18 mutation, which is thought to affect synaptic vesicle docking to the active zone. This suggests a crucial role for the unc-13 gene product in the mediation or regulation of synaptic vesicle exocytosis. Munc13-1 is one of three closely related rat homologues of unc-13. Based on the high degree of similarity between unc-13 and Munc13 proteins, it is thought that their essential function has been conserved from C. elegans to mammals. Munc13-1 is a brain-specific peripheral membrane protein with multiple regulatory domains that may mediate diacylglycerol, phospholipid, and calcium binding. In the present study, we demonstrate by three independent methods that the C terminus of Munc13-1 interacts directly with a putative coiled coil domain in the N-terminal part of syntaxin. Syntaxin is a component of the exocytotic synaptic core complex, a heterotrimeric protein complex with an essential role in transmitter release. Through this interaction, Munc13-1 binds to a subpopulation of the exocytotic core complex containing synaptobrevin, SNAP25 (synaptosomal-associated protein of 25 kDa), and syntaxin, but to no other tested syntaxin-interacting or core complex-interacting protein. The site of interaction in syntaxin is similar to the binding site for the unc-18 homologue Munc18, but different from that of all other known syntaxin interactors. These data indicate that unc-13-related proteins may indeed be involved in the mediation or regulation of synaptic vesicle exocytosis by modulating or regulating core complex formation. The similarity between the unc-13 and unc-18 phenotypes is paralleled by the coincidence of the binding sites for Munc13-1 and Munc18 in syntaxin. It is possible that the phenotype of unc-13 and unc-18 mutations is caused by the inability of the respective mutated gene products to bind to syntaxin.
The EMBO Journal | 2000
Uri Ashery; Frederique Varoqueaux; Thomas Voets; Andrea Betz; Pratima Thakur; Henriette Koch; Erwin Neher; Nils Brose; Jens Rettig
In chromaffin cells the number of large dense‐core vesicles (LDCVs) which can be released by brief, intense stimuli represents only a small fraction of the ‘morphologically docked’ vesicles at the plasma membrane. Recently, it was shown that Munc13‐1 is essential for a post‐docking step of synaptic vesicle fusion. To investigate the role of Munc13‐1 in LDCV exocytosis, we overexpressed Munc13‐1 in chromaffin cells and stimulated secretion by flash photolysis of caged calcium. Both components of the exocytotic burst, which represent the fusion of release‐competent vesicles, were increased by a factor of three. The sustained component, which represents vesicle maturation and subsequent fusion, was increased by the same factor. The response to a second flash, however, was greatly reduced, indicating a depletion of release‐competent vesicles. Since there was no apparent change in the number of docked vesicles, we conclude that Munc13‐1 acts as a priming factor by accelerating the rate constant of vesicle transfer from a pool of docked, but unprimed vesicles to a pool of release‐competent, primed vesicles.
The Journal of Neuroscience | 2007
Jayeeta Basu; Andrea Betz; Nils Brose; Christian Rosenmund
Synapses need to encode a wide dynamic range of action potential frequencies. Essential vesicle priming proteins of the Munc13 (mammalian Unc13) family play an important role in adapting vesicle supply to variable demand and thus influence short-term plasticity characteristics and synaptic function. Structure–function analyses of Munc13s have identified a “catalytic” C-terminal domain and several N-terminal modulatory domains, including a diacylglycerol/phorbol ester [4β-phorbol-12, 13-dibutyrate (PDBu)] binding C1 domain. Although still allowing basal priming, a Munc13-1 C1 domain mutation (H567K) prevents PDBu induced potentiation of evoked transmitter release, leads to strong depression during trains of synaptic activity, and causes perinatal lethality in mice. To understand the mechanism of C1 domain-mediated modulation of Munc13 function, we examined how PDBu increases neurotransmitter release. Analyses of osmotically induced release as well as Ca2+ triggered and spontaneous release showed that PDBu increases the vesicular release rate without affecting the size of the readily releasable vesicle pool, linking C1 domain activation to a lowering of the energy barrier for vesicle fusion. PDBu binding-deficient mutant Munc13-1H567K synapses mirrored the vesicular release properties of PDBu-potentiated wild-type synapses, indicating that Munc13-1H567K is a gain-of-function mutant, which conformationally mimics the PDBu-activated state of Munc13-1. We propose a PKC analogous two-state model of regulation of Munc13s, in which the basal state of Munc13s is disinhibited by C1 domain activation into a state of facilitated vesicle release, regardless of whether the release is spontaneous or action potential triggered.
Neuron | 2007
Heike Wegmeyer; Joaquim Egea; Nadine Rabe; Henrik Gezelius; Alessandro Filosa; Anders Enjin; Frederique Varoqueaux; Katrin Deininger; Frank Schnütgen; Nils Brose; Rüdiger Klein; Klas Kullander; Andrea Betz
Neuronal network formation in the developing nervous system is dependent on the accurate navigation of nerve cell axons and dendrites, which is controlled by attractive and repulsive guidance cues. ...
Current Opinion in Neurobiology | 2004
Nils Brose; Andrea Betz; Heike Wegmeyer
Diacylglycerol is an essential second messenger in mammalian cells. The most prominent intracellular targets of diacylglycerol and the functionally analogous phorbol esters belong to the protein kinase C family, but at least five alternative types of high affinity diacylglycerol/phorbol ester receptors are known: protein kinase D, diacylglycerol kinases alpha, beta, and gamma, RasGRPs, chimaerins, and Munc13s. These function independently of protein kinase C isozymes, and form a network of signaling pathways in the diacylglycerol second messenger system that regulates processes as diverse as gene transcription, lipid signaling, cytoskeletal dynamics, intracellular membrane trafficking, or neurotransmitter release.
European Journal of Cell Biology | 1999
Uri Ashery; Andrea Betz; Tao Xu; Nils Brose; Jens Rettig
We have expanded the use of the Semliki Forest virus (SFV) by infecting chromaffin cells with synaptic proteins at high efficiency. Using the SFV gene expression system, up to 40% of cultured bovine chromaffin cells express the protein of interest within 12-48 h after infection. In order to learn about the basic physiological properties of infected cells, we performed membrane capacitance measurements using the whole-cell patch-clamp technique and monitored catecholamine release with amperometry. We found that chromaffin cells infected with green fluorescent protein (GFP) were comparable to control cells in intracellular calcium concentrations ([Ca2+]i), leak currents and cell sizes. In response to depolarization, calcium currents were elicited and the cells secreted catecholamine. Comparison of the calcium current amplitude and the size of the readily releasable pool of vesicles revealed a small decrease in these parameters compared to control cells. The refilling kinetics after pool depletion, however, were not altered. Overexpressed munc13-1 translocates to the plasma membrane in response to phorbol esters, an effect that is also observed in fibroblasts transfected with conventional methods. Thus, the use of the SFV gene expression system to infect chromaffin cells represents a major improvement in infection efficiency compared to other methods. It opens up new opportunities to introduce synaptic proteins into chromaffin cells and study their role in secretion.
Diabetes | 2006
Edwin P. Kwan; Li Xie; Laura Sheu; Christopher J. Nolan; Marc Prentki; Andrea Betz; Nils Brose; Herbert Y. Gaisano
Munc13-1 is a diacylglycerol (DAG) receptor that is essential for synaptic vesicle priming. We recently showed that Munc13-1 is expressed in rodent and human islet β-cells and that its levels are reduced in islets of type 2 diabetic humans and rat models, suggesting that Munc13-1 deficiency contributes to the abnormal insulin secretion in diabetes. To unequivocally demonstrate the role of Munc13-1 in insulin secretion, we studied heterozygous Munc13-1 knockout mice (+/−), which exhibited elevated glucose levels during intraperitoneal glucose tolerance tests with corresponding lower serum insulin levels. Munc13-1+/− mice exhibited normal insulin tolerance, indicating that a primary islet β-cell secretory defect is the major cause of their hyperglycemia. Consistently, glucose-stimulated insulin secretion was reduced 50% in isolated Munc13-1+/− islets and was only partially rescued by phorbol ester potentiation. The corresponding alterations were minor in mice expressing one allele of a Munc13-1 mutant variant, which does not bind DAG (H567K/+). Capacitance measurements of Munc13-1+/− and Munc13-1H567k/+ islet β-cells revealed defects in granule priming, including the initial size and refilling of the releasable pools, which become accentuated by phorbol ester potentiation. We conclude that Munc13-1 plays an important role in glucose-stimulated insulin secretion and that Munc13-1 deficiency in the pancreatic islets as occurs in diabetes can reduce insulin secretion sufficient to cause abnormal glucose homeostasis.