Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Carpentieri is active.

Publication


Featured researches published by Andrea Carpentieri.


Microbial Pathogenesis | 2008

Protease treatment affects both invasion ability and biofilm formation in Listeria monocytogenes

Catia Longhi; Gian Luca Scoarughi; Federica Poggiali; Andrea Cellini; Andrea Carpentieri; Lucilla Seganti; Pietro Pucci; Angela Amoresano; Pier Sandro Cocconcelli; Marco Artini; John William Costerton; Laura Selan

Listeria monocytogenes is a notably invasive bacterium associated with life-threatening food-borne disease in humans. Several surface proteins have been shown to be essential in the adhesion of L. monocytogenes, and in the subsequent invasion of phagocytes. Because the control of the invasion of host cells by Listeria could potentially hinder its spread in the infected host, we have examined the effects of a protease treatment on the ability of L. monocytogenes to form biofilms and to invade tissues. We have chosen serratiopeptidase (SPEP), an extracellular metalloprotease produced by Serratia marcescens that is already widely used as an anti-inflammatory agent, and has been shown to modulate adhesin expression and to induce antibiotic sensitivity in other bacteria. Treatment of L. monocytogenes with sublethal concentrations of SPEP reduced their ability to form biofilms and to invade host cells. Zymograms of the treated cells revealed that Ami4b autolysin, internalinB, and ActA were sharply reduced. These cell-surface proteins are known to function as ligands in the interaction between these bacteria and their host cells, and our data suggest that treatment with this natural enzyme may provide a useful tool in the prevention of the initial adhesion of L. monocytogenes to the human gut.


Proteins | 2008

The peculiar structural features of kiwi fruit pectin methylesterase: Amino acid sequence, oligosaccharides structure, and modeling of the interaction with its natural proteinaceous inhibitor

M. Antonietta Ciardiello; Rossana D'Avino; Angela Amoresano; Lisa Tuppo; Andrea Carpentieri; Vito Carratore; M. Tamburrini; Alfonso Giovane; Piero Pucci; Laura Camardella

Pectin methylesterase (PME) from kiwi fruit (Actinidia deliciosa) is a glycoprotein, showing an apparent molecular mass of 50 kDa upon size exclusion chromatography and SDS‐PAGE. The primary structure, elucidated by direct sequencing of the protein, comprises 321 amino acid residues providing a molecular mass of 35 kDa. The protein has an acetylated Thr residue at the amino terminus and five N‐glycosylation consensus sequences, four of which are actually glycosylated. A careful investigation of the oligosaccharide structures demonstrated that PME glycans belong to complex type oligosaccharides essentially consisting of xylosylated polyfucosylated biantennary structures. Alignment with known mature plant PME sequences indicates that the postulated active site residues are conserved. Kiwi PME activity is inhibited following the interaction with the proteinaceous inhibitor PMEI, isolated from the same source. Gel‐filtration experiments show that kiwi PME/PMEI complex is stable in a large pH range and dissociates only at pH 10.0. Modeling of the interaction with the inhibitor was performed by using the crystal structure of the complex between kiwi PMEI and tomato PME as a template. The model shows that the binding site is the same reported for tomato PME. However, additional salt link interactions are found to connect the external loops of kiwi PME to PMEI. This finding may explain the higher pH stability of the complex formed by the two kiwi proteins respect to that formed by PMEI and tomato PME. Proteins 2008.


PLOS Pathogens | 2010

Giardia Cyst Wall Protein 1 Is a Lectin That Binds to Curled Fibrils of the GalNAc Homopolymer

Aparajita Chatterjee; Andrea Carpentieri; Daniel M. Ratner; Esther Bullitt; Catherine E. Costello; Phillips W. Robbins; John Samuelson

The infectious and diagnostic stage of Giardia lamblia (also known as G. intestinalis or G. duodenalis) is the cyst. The Giardia cyst wall contains fibrils of a unique β-1,3-linked N-acetylgalactosamine (GalNAc) homopolymer and at least three cyst wall proteins (CWPs) composed of Leu-rich repeats (CWPLRR) and a C-terminal conserved Cys-rich region (CWPCRR). Our goals were to dissect the structure of the cyst wall and determine how it is disrupted during excystation. The intact Giardia cyst wall is thin (∼400 nm), easily fractured by sonication, and impermeable to small molecules. Curled fibrils of the GalNAc homopolymer are restricted to a narrow plane and are coated with linear arrays of oval-shaped protein complex. In contrast, cyst walls of Giardia treated with hot alkali to deproteinate fibrils of the GalNAc homopolymer are thick (∼1.2 µm), resistant to sonication, and permeable. The deproteinated GalNAc homopolymer, which forms a loose lattice of curled fibrils, is bound by native CWP1 and CWP2, as well as by maltose-binding protein (MBP)-fusions containing the full-length CWP1 or CWP1LRR. In contrast, neither MBP alone nor MBP fused to CWP1CRR bind to the GalNAc homopolymer. Recombinant CWP1 binds to the GalNAc homopolymer within secretory vesicles of Giardia encysting in vitro. Fibrils of the GalNAc homopolymer are exposed during excystation or by treatment of heat-killed cysts with chymotrypsin, while deproteinated fibrils of the GalNAc homopolymer are degraded by extracts of Giardia cysts but not trophozoites. These results show the Leu-rich repeat domain of CWP1 is a lectin that binds to curled fibrils of the GalNAc homopolymer. During excystation, host and Giardia proteases appear to degrade bound CWPs, exposing fibrils of the GalNAc homopolymer that are digested by a stage-specific glycohydrolase.


Cellular and Molecular Life Sciences | 2009

Different carbon sources affect lifespan and protein redox state during Saccharomyces cerevisiae chronological ageing

Francesca Magherini; Andrea Carpentieri; Angela Amoresano; Tania Gamberi; C. De Filippo; Lisa Rizzetto; Massimiliano Biagini; Pietro Pucci; Alessandra Modesti

Abstract.In this study, a proteomic approach that combines selective labelling of proteins containing reduced cysteine residues with two-dimensional electrophoresis/mass spectrometry was used to evaluate the redox state of protein cysteines during chronological ageing in Saccharomyces cerevisiae. The procedure was developed on the grounds that biotinconjugated iodoacetamide (BIAM) specifically reacts with reduced cysteine residues. BIAM-labelled proteins can then be selectively isolated by streptavidin affinity capture. We compared cells grown on 2% glucose in the exponential phase and during chronological ageing and we found that many proteins undergo cysteine oxidation. The target proteins include enzymes involved in glucose metabolism. Both caloric restriction and growth on glycerol resulted in a decrease in the oxidative modification. Furthermore, in these conditions a reduced production of ROS and a more negative glutathione half cell redox potential were observed.


Biochimica et Biophysica Acta | 2008

Characterisation of α3β1 and αvβ3 integrin N-oligosaccharides in metastatic melanoma WM9 and WM239 cell lines

Marcelina Kremser; Małgorzata Przybyło; Dorota Hoja-Łukowicz; Ewa Pocheć; Angela Amoresano; Andrea Carpentieri; Monika Bubka; Anna Lityńska

It is well documented that glycan synthesis is altered in some pathological processes, including cancer. The most frequently observed alterations during tumourigenesis are extensive expression of beta1,6-branched complex type N-glycans, the presence of poly-N-acetyllactosamine structures, and high sialylation of cell surface glycoproteins. This study investigated two integrins, alpha3beta1 and alpha(v)beta3, whose expression is closely related to cancer progression. Their oligosaccharide structures in two metastatic melanoma cell lines (WM9, WM239) were analysed with the use of matrix-assisted laser desorption ionisation mass spectrometry. Both examined integrins possessed heavily sialylated and fucosylated glycans, with beta1,6-branches and short polylactosamine chains. In WM9 cells, alpha3beta1 integrin was more variously glycosylated than alpha(v)beta3; in WM239 cells the situation was the reverse. Functional studies (wound healing and ELISA integrin binding assays) revealed that the N-oligosaccharide component of the tested integrins influenced melanoma cell migration on vitronectin and alpha3beta1 integrin binding to laminin-5. Additionally, more variously glycosylated integrins exerted a stronger influence on these parameters. To the best of our knowledge, this is the first report concerning structural characterisation of alpha(v)beta3 integrin glycans in melanoma or in any cancer cells.


Mbio | 2013

Evidence for a Structural Role for Acid-Fast Lipids in Oocyst Walls of Cryptosporidium, Toxoplasma, and Eimeria

G. Guy Bushkin; Edwin Motari; Andrea Carpentieri; J. P. Dubey; Catherine E. Costello; Phillips W. Robbins; John Samuelson

ABSTRACT Coccidia are protozoan parasites that cause significant human disease and are of major agricultural importance. Cryptosporidium spp. cause diarrhea in humans and animals, while Toxoplasma causes disseminated infections in fetuses and untreated AIDS patients. Eimeria is a major pathogen of commercial chickens. Oocysts, which are the infectious form of Cryptosporidium and Eimeria and one of two infectious forms of Toxoplasma (the other is tissue cysts in undercooked meat), have a multilayered wall. Recently we showed that the inner layer of the oocyst walls of Toxoplasma and Eimeria is a porous scaffold of fibers of β-1,3-glucan, which are also present in fungal walls but are absent from Cryptosporidium oocyst walls. Here we present evidence for a structural role for lipids in the oocyst walls of Cryptosporidium, Toxoplasma, and Eimeria. Briefly, oocyst walls of each organism label with acid-fast stains that bind to lipids in the walls of mycobacteria. Polyketide synthases similar to those that make mycobacterial wall lipids are abundant in oocysts of Toxoplasma and Eimeria and are predicted in Cryptosporidium. The outer layer of oocyst wall of Eimeria and the entire oocyst wall of Cryptosporidium are dissolved by organic solvents. Oocyst wall lipids are complex mixtures of triglycerides, some of which contain polyhydroxy fatty acyl chains like those present in plant cutin or elongated fatty acyl chains like mycolic acids. We propose a two-layered model of the oocyst wall (glucan and acid-fast lipids) that resembles the two-layered walls of mycobacteria (peptidoglycan and acid-fast lipids) and plants (cellulose and cutin). IMPORTANCE Oocysts, which are essential for the fecal-oral spread of coccidia, have a wall that is thought responsible for their survival in the environment and for their transit through the stomach and small intestine. While oocyst walls of Toxoplasma and Eimeria are strengthened by a porous scaffold of fibrils of β-1,3-glucan and by proteins cross-linked by dityrosines, both are absent from walls of Cryptosporidium. We show here that all oocyst walls are acid fast, have a rigid bilayer, dissolve in organic solvents, and contain a complex set of triglycerides rich in polyhydroxy and long fatty acyl chains that might be synthesized by an abundant polyketide synthase. These results suggest the possibility that coccidia build a waxy coat of acid-fast lipids in the oocyst wall that makes them resistant to environmental stress. Oocysts, which are essential for the fecal-oral spread of coccidia, have a wall that is thought responsible for their survival in the environment and for their transit through the stomach and small intestine. While oocyst walls of Toxoplasma and Eimeria are strengthened by a porous scaffold of fibrils of β-1,3-glucan and by proteins cross-linked by dityrosines, both are absent from walls of Cryptosporidium. We show here that all oocyst walls are acid fast, have a rigid bilayer, dissolve in organic solvents, and contain a complex set of triglycerides rich in polyhydroxy and long fatty acyl chains that might be synthesized by an abundant polyketide synthase. These results suggest the possibility that coccidia build a waxy coat of acid-fast lipids in the oocyst wall that makes them resistant to environmental stress.


Journal of Biological Chemistry | 2011

Chymotrypsin C Is a Co-activator of Human Pancreatic Procarboxypeptidases A1 and A2

Richárd Szmola; Melinda Bence; Andrea Carpentieri; András Szabó; Catherine E. Costello; John Samuelson; Miklós Sahin-Tóth

Human digestive carboxypeptidases CPA1, CPA2, and CPB1 are secreted by the pancreas as inactive proenzymes containing a 94–96-amino acid-long propeptide. Activation of procarboxypeptidases is initiated by proteolytic cleavage at the C-terminal end of the propeptide by trypsin. Here, we demonstrate that subsequent cleavage of the propeptide by chymotrypsin C (CTRC) induces a nearly 10-fold increase in the activity of trypsin-activated CPA1 and CPA2, whereas CPB1 activity is unaffected. Other human pancreatic proteases such as chymotrypsin B1, chymotrypsin B2, chymotrypsin-like enzyme-1, elastase 2A, elastase 3A, or elastase 3B are inactive or markedly less effective at promoting procarboxypeptidase activation. On the basis of these observations, we propose that CTRC is a physiological co-activator of proCPA1 and proCPA2. Furthermore, the results confirm and extend the notion that CTRC is a key regulator of digestive zymogen activation.


International Journal of Immunopathology and Pharmacology | 2011

A new anti-infective strategy to reduce adhesion-mediated virulence in Staphylococcus aureus affecting surface proteins.

Marco Artini; Gian Luca Scoarughi; Rosanna Papa; Andrea Cellini; Andrea Carpentieri; Pietro Pucci; Angela Amoresano; Simona Gazzola; Pier Sandro Cocconcelli; Laura Selan

Staphylococcus aureus is a flexible microbial pathogen frequently isolated from community-acquired and nosocomial infections. The use of indwelling medical devices is associated with a significant risk of infection by this bacterium which possesses a variety of virulence factors, including many toxins, and the ability to invade eukaryotic cells or to form biofilm on biotic and abiotic surfaces. The present study evaluates the anti-infective properties of serratiopeptidase, a secreted protein of Serratia marcescens, in impairing virulence-related staphylococcal properties, such as attachment to inert surfaces and adhesion/invasion on eukaryotic cells. SPEP seems to exert its action by modulating specific proteins. Proteomic studies performed on surface proteins extracted from SPEP-treated S. aureus cultures revealed that a number of proteins are affected by the treatment. Among these we found the adhesin/autolysin Atl, FnBP-A, SecA1, Sbi, EF-Tu, EF-G, and alpha-enolase. EF-Tu, EF-G and alpha-enolase are known to perform a variety of functions, depending on their cytoplasmic or surface localization. All these factors can facilitate bacterial colonization, persistence and invasion of host tissues. Our results suggest that SPEP could be developed as a potential “anti-infective agent” capable to hinder the entry of S. aureus into human tissues, and also impair the ability of this pathogen to form biofilm on prostheses, catheters and medical devices.


Journal of Neurochemistry | 2009

Gating deficits in isolation‐reared rats are correlated with alterations in protein expression in nucleus accumbens

Paola Roncada; M Bortolato; Roberto Frau; Pierluigi Saba; Giovanna Flore; Alessio Soggiu; Salvatore Pisanu; Angela Amoresano; Andrea Carpentieri; Paola Devoto

The isolation‐rearing (IR) paradigm, consisting of the social deprivation for 6–9 weeks after weaning, induces a spectrum of aberrant behaviors in adult rats. Some of these alterations such as sensorimotor gating deficits are reminiscent of the dysfunctions observed in schizophrenia patients. Although gating impairments in IR rats have been linked to impairments in the cortico‐mesolimbic system, the specific molecular mechanisms underlying this relation are unclear. To elucidate the neurochemical modifications underlying the gating disturbances exhibited by IR rats, we compared their pre‐pulse inhibition (PPI) of the acoustic startle reflex with that of socially reared (SR) controls, and correlated this index to the results of proteomic analyses in prefrontal cortex and nucleus accumbens from both groups. As expected, IR rats exhibited significantly lower startle amplitude and PPI than their SR counterparts. Following behavioral testing, IR and SR rats were killed and protein expression profiles of their brain regions were examined using two‐dimensional electrophoresis based proteomics. Image analysis in the Coomassie blue‐stained gel revealed that three protein spots were differentially expressed in the nucleus accumbens of IR and SR rats. Mass spectrometry (matrix‐assisted laser desorption ionization‐time of flight and MS/MS) identified these spots as heat shock protein 60 (HSP60), α‐synuclein (α‐syn), and 14‐3‐3 protein ζ/δ. While accumbal levels of HSP60 was decreased in IR rats, α‐syn and 14‐3‐3 proteins were significantly increased in IR in comparison with SR controls. Notably, these two last alterations were significantly correlated with different loudness intensity‐specific PPI deficits in IR rats. In view of the role of these proteins in synaptic trafficking and dopaminergic regulation, these findings might provide a neurochemical foundation for the gating alterations and psychotic‐like behaviors in IR rats.


Biochemical and Biophysical Research Communications | 2009

Positive modulation of RNA polymerase III transcription by ribosomal proteins.

Giorgio Dieci; Roberta Ruotolo; Priscilla Braglia; Christophe Carles; Andrea Carpentieri; Angela Amoresano; Simone Ottonello

A yeast nuclear fraction of unknown composition, named TFIIIE, was reported previously to enhance transcription of tRNA and 5S rRNA genes in vitro. We show that TFIIIE activity co-purifies with a specific subset of ribosomal proteins (RPs) which, as revealed by chromatin immunoprecipitation analysis, generally interact with tRNA and 5S rRNA genes, but not with a Pol II-specific promoter. Only Rpl6Ap and Rpl6Bp, among the tested RPs, were found associated to a TATA-containing tRNA(Ile)(TAT) gene. The RPL6A gene also emerged as a strong multicopy suppressor of a conditional mutation in the basal transcription factor TFIIIC, while RPL26A and RPL14A behaved as weak suppressors. The data delineate a novel extra-ribosomal role for one or a few RPs which, by influencing 5S rRNA and tRNA synthesis, could play a key role in the coordinate regulation of the different sub-pathways required for ribosome biogenesis and functionality.

Collaboration


Dive into the Andrea Carpentieri's collaboration.

Top Co-Authors

Avatar

Angela Amoresano

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Piero Pucci

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Pietro Pucci

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chiara Giangrande

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Delia Picone

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Elio Pizzo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Gennaro Marino

University of Naples Federico II

View shared research outputs
Researchain Logo
Decentralizing Knowledge