Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Christoforou is active.

Publication


Featured researches published by Andrea Christoforou.


Molecular Psychiatry | 2011

Genome-wide association studies establish that human intelligence is highly heritable and polygenic.

Gail Davies; Albert Tenesa; A. Payton; Jian Yang; Sarah E. Harris; David C. Liewald; Xiayi Ke; S. Le Hellard; Andrea Christoforou; Michelle Luciano; Kevin A. McGhee; Lorna M. Lopez; Alan J. Gow; J. Corley; Paul Redmond; Helen C. Fox; Paul Haggarty; Lawrence J. Whalley; Geraldine McNeill; Michael E. Goddard; Thomas Espeseth; Astri J. Lundervold; Ivar Reinvang; Andrew Pickles; Vidar M. Steen; William Ollier; David J. Porteous; M. Horan; Neil Pendleton; Peter M. Visscher

General intelligence is an important human quantitative trait that accounts for much of the variation in diverse cognitive abilities. Individual differences in intelligence are strongly associated with many important life outcomes, including educational and occupational attainments, income, health and lifespan. Data from twin and family studies are consistent with a high heritability of intelligence, but this inference has been controversial. We conducted a genome-wide analysis of 3511 unrelated adults with data on 549 692 single nucleotide polymorphisms (SNPs) and detailed phenotypes on cognitive traits. We estimate that 40% of the variation in crystallized-type intelligence and 51% of the variation in fluid-type intelligence between individuals is accounted for by linkage disequilibrium between genotyped common SNP markers and unknown causal variants. These estimates provide lower bounds for the narrow-sense heritability of the traits. We partitioned genetic variation on individual chromosomes and found that, on average, longer chromosomes explain more variation. Finally, using just SNP data we predicted ∼1% of the variance of crystallized and fluid cognitive phenotypes in an independent sample (P=0.009 and 0.028, respectively). Our results unequivocally confirm that a substantial proportion of individual differences in human intelligence is due to genetic variation, and are consistent with many genes of small effects underlying the additive genetic influences on intelligence.


Nature Genetics | 2012

Identification of common variants associated with human hippocampal and intracranial volumes

Jason L. Stein; Sarah E. Medland; A A Vasquez; Derrek P. Hibar; R. E. Senstad; Anderson M. Winkler; Roberto Toro; K Appel; R. Bartecek; Ørjan Bergmann; Manon Bernard; Andrew Anand Brown; Dara M. Cannon; M. Mallar Chakravarty; Andrea Christoforou; M. Domin; Oliver Grimm; Marisa Hollinshead; Avram J. Holmes; Georg Homuth; J.J. Hottenga; Camilla Langan; Lorna M. Lopez; Narelle K. Hansell; Kristy Hwang; Sungeun Kim; Gonzalo Laje; Phil H. Lee; Xinmin Liu; Eva Loth

Identifying genetic variants influencing human brain structures may reveal new biological mechanisms underlying cognition and neuropsychiatric illness. The volume of the hippocampus is a biomarker of incipient Alzheimers disease and is reduced in schizophrenia, major depression and mesial temporal lobe epilepsy. Whereas many brain imaging phenotypes are highly heritable, identifying and replicating genetic influences has been difficult, as small effects and the high costs of magnetic resonance imaging (MRI) have led to underpowered studies. Here we report genome-wide association meta-analyses and replication for mean bilateral hippocampal, total brain and intracranial volumes from a large multinational consortium. The intergenic variant rs7294919 was associated with hippocampal volume (12q24.22; N = 21,151; P = 6.70 × 10−16) and the expression levels of the positional candidate gene TESC in brain tissue. Additionally, rs10784502, located within HMGA2, was associated with intracranial volume (12q14.3; N = 15,782; P = 1.12 × 10−12). We also identified a suggestive association with total brain volume at rs10494373 within DDR2 (1q23.3; N = 6,500; P = 5.81 × 10−7).


Molecular Psychiatry | 2007

Association of Neuregulin 1 with schizophrenia and bipolar disorder in a second cohort from the Scottish population.

Pippa Thomson; Andrea Christoforou; Stewart W. Morris; E. Adie; Benjamin S. Pickard; David J. Porteous; Walter J. Muir; Douglas Blackwood; Kathryn L. Evans

Neuregulin 1 (NRG1) is a strong candidate for involvement in the aetiology of schizophrenia. A haplotype, initially identified as showing association in the Icelandic and Scottish populations, has shown a consistent effect size in multiple European populations. Additionally, NRG1 has been implicated in susceptibility to bipolar disorder. In this first study to select markers systematically on the basis of linkage disequilibrium across the entire NRG1 gene, we used haplotype-tagging single-nucleotide polymorphisms to identify single markers and haplotypes associated with schizophrenia and bipolar disorder in an independently ascertained Scottish population. Haplotypes in two regions met an experiment-wide significance threshold of P=0.0016 (Nyholts SpD) and were permuted to correct for multiple testing. Region A overlaps with the Icelandic haplotype and shows nominal association with schizophrenia (P=0.00032), bipolar disorder (P=0.0011), and the combined case group (P=0.0017). This region includes the 5′ exon of the NRG1 GGF2 isoform and overlaps the expressed sequence tag (EST) cluster Hs.97362. However, no haplotype in Region A remains significant after permutation analysis (P>0.05). Region B contains a haplotype associated with both schizophrenia (P=0.00014), and the combined case group (P=0.000062), although it does not meet Nyholts threshold in bipolar disorder alone (P=0.0022). This haplotype remained significant after permutation analysis in both the schizophrenia and combined case groups (P=0.024 and P=0.016, respectively). It spans a ∼136 kb region that includes the coding sequence of the sensory and motor neuron derived factor (SMDF) isoform and 3′ exons of all other known NRG1 isoforms. Our study identifies a new of NRG1 region involved in schizophrenia and bipolar disorder in the Scottish population.


Molecular Psychiatry | 2014

Molecular genetic evidence for overlap between general cognitive ability and risk for schizophrenia: a report from the Cognitive Genomics consorTium (COGENT).

Todd Lencz; Emma Knowles; Gail Davies; Saurav Guha; David C. Liewald; Srdjan Djurovic; Ingrid Melle; Kjetil Sundet; Andrea Christoforou; Ivar Reinvang; Semanti Mukherjee; Pamela DeRosse; Astri J. Lundervold; Vidar M. Steen; Majnu John; Thomas Espeseth; Katri Räikkönen; Elisabeth Widen; Aarno Palotie; Johan G. Eriksson; Ina Giegling; Bettina Konte; Masashi Ikeda; Panos Roussos; Stella G. Giakoumaki; Katherine E. Burdick; A. Payton; William Ollier; M. Horan; Gary Donohoe

It has long been recognized that generalized deficits in cognitive ability represent a core component of schizophrenia (SCZ), evident before full illness onset and independent of medication. The possibility of genetic overlap between risk for SCZ and cognitive phenotypes has been suggested by the presence of cognitive deficits in first-degree relatives of patients with SCZ; however, until recently, molecular genetic approaches to test this overlap have been lacking. Within the last few years, large-scale genome-wide association studies (GWAS) of SCZ have demonstrated that a substantial proportion of the heritability of the disorder is explained by a polygenic component consisting of many common single-nucleotide polymorphisms (SNPs) of extremely small effect. Similar results have been reported in GWAS of general cognitive ability. The primary aim of the present study is to provide the first molecular genetic test of the classic endophenotype hypothesis, which states that alleles associated with reduced cognitive ability should also serve to increase risk for SCZ. We tested the endophenotype hypothesis by applying polygenic SNP scores derived from a large-scale cognitive GWAS meta-analysis (~5000 individuals from nine nonclinical cohorts comprising the Cognitive Genomics consorTium (COGENT)) to four SCZ case-control cohorts. As predicted, cases had significantly lower cognitive polygenic scores compared to controls. In parallel, polygenic risk scores for SCZ were associated with lower general cognitive ability. In addition, using our large cognitive meta-analytic data set, we identified nominally significant cognitive associations for several SNPs that have previously been robustly associated with SCZ susceptibility. Results provide molecular confirmation of the genetic overlap between SCZ and general cognitive ability, and may provide additional insight into pathophysiology of the disorder.


Molecular Psychiatry | 2006

Cytogenetic and genetic evidence supports a role for the kainate-type glutamate receptor gene, GRIK4, in schizophrenia and bipolar disorder

Benjamin S. Pickard; M. P. Malloy; Andrea Christoforou; Pippa A. Thomson; Kathryn L. Evans; Stewart W. Morris; M. Hampson; David J. Porteous; Douglas Blackwood; Walter J. Muir

In the search for the biological causes of schizophrenia and bipolar disorder, glutamate neurotransmission has emerged as one of a number of candidate processes and pathways where underlying gene deficits may be present. The analysis of chromosomal rearrangements in individuals diagnosed with neuropsychiatric disorders is an established route to candidate gene identification in both Mendelian and complex disorders. Here we describe a set of genes disrupted by, or proximal to, chromosomal breakpoints (2p12, 2q31.3, 2q21.2, 11q23.3 and 11q24.2) in a patient where chronic schizophrenia coexists with mild learning disability (US: mental retardation). Of these disrupted genes, the most promising candidate is a member of the kainate-type ionotropic glutamate receptor family, GRIK4 (KA1). A subsequent systematic case–control association study on GRIK4 assessed its contribution to psychiatric illness in the karyotypically normal population. This identified two discrete regions of disease risk within the GRIK4 locus: three single single nucleotide polymorphism (SNP) markers with a corresponding underlying haplotype associated with susceptibility to schizophrenia (P=0.0005, odds ratio (OR) of 1.453, 95% CI 1.182–1.787) and two single SNP markers and a haplotype associated with a protective effect against bipolar disorder (P=0.0002, OR of 0.624, 95% CI 0.485–0.802). After permutation analysis to correct for multiple testing, schizophrenia and bipolar disorder haplotypes remained significant (P=0.0430, s.e. 0.0064 and P=0.0190, s.e. 0.0043, respectively). We propose that these convergent cytogenetic and genetic findings provide molecular evidence for common aetiologies for different psychiatric conditions and further support the ‘glutamate hypothesis’ of psychotic illness.


Molecular Psychiatry | 2009

Interacting haplotypes at the NPAS3 locus alter risk of schizophrenia and bipolar disorder

Benjamin S. Pickard; Andrea Christoforou; Pippa Thomson; A. Fawkes; Kathryn L. Evans; Stewart W. Morris; David J. Porteous; Douglas Blackwood; Walter J. Muir

The neuronal PAS domain 3 (NPAS3) gene encodes a neuronal transcription factor that is implicated in psychiatric disorders by the identification of a human chromosomal translocation associated with schizophrenia and a mouse knockout model with behavioural and hippocampal neurogenesis defects. To determine its contribution to the risk of psychiatric illness in the general population, we genotyped 70 single-nucleotide polymorphisms across the NPAS3 gene in 368 individuals with bipolar disorder, 386 individuals with schizophrenia and 455 controls. Modestly significant single-marker and global and individual haplotypes were identified in four discrete regions of the gene. The presence of both risk and protective haplotypes at each of these four regions indicated locus and allelic heterogeneity within NPAS3 and suggested a model whereby interactions between variants across the gene might contribute to susceptibility to illness. This was supported by predicting the most likely haplotype for each individual at each associated region and then calculating an NPAS3-mediated ‘net genetic load’ value. This value differed significantly from controls for both bipolar disorder (P=0.0000010) and schizophrenia (P=0.0000012). Logistic regression analysis also confirmed the combinatorial action of the four associated regions on disease risk. In addition, sensitivity/specificity plots showed that the extremes of the genetic loading distribution possess the greatest predictive power—a feature suggesting multiplicative allele interaction. These data add to recent evidence that the combinatorial analysis of a number of relatively small effect size haplotypes may have significant power to predict an individuals risk of a complex genetic disorder such as psychiatric illness.


Psychiatric Genetics | 2007

The PDE4B gene confers sex-specific protection against schizophrenia

Benjamin S. Pickard; Philippa A. Thomson; Andrea Christoforou; Kathryn L. Evans; Stewart W. Morris; David J. Porteous; Douglas Blackwood; Walter J. Muir

Background Phosphodiesterase 4B (PDE4B) is a candidate gene for schizophrenia and affective disorders through its disruption by a chromosomal translocation in an individual with schizophrenia, its inhibition by the antidepressant rolipram, and its physical interaction with another key candidate, Disrupted in Schizophrenia (DISC1). Objective To determine the contribution made by PDE4B to the population risk of schizophrenia and bipolar disorder by carrying out a case–control association study. Methods Twenty-six tagging single nucleotide polymorphisms were selected across the PDE4B gene and genotyped in DNA samples from 386 schizophrenia cases, 368 bipolar disorder cases and 455 controls. Main results Single single nucleotide polymorphisms and a resulting haplotype conferred a protective effect against schizophrenia in the female population. The haplotype result remained significant after correction for multiple testing (P=0.012). Conclusion The observation that a PDE4B haplotype alters the genetic risk of schizophrenia in the Scottish population complements the known participation of this gene in biological processes associated with mental illness. Further studies are needed to replicate this finding and identify underlying sequence variants.


Nature Genetics | 2004

SUMO modification is required for in vivo Hox gene regulation by the Caenorhabditis elegans Polycomb group protein SOP-2

Hong Zhang; Gromoslaw A. Smolen; Rachel Palmer; Andrea Christoforou; Sander van den Heuvel; Daniel A. Haber

Post-translational modification of proteins by the ubiquitin-like molecule SUMO (sumoylation) regulates their subcellular localization and affects their functional properties in vitro, but the physiological function of sumoylation in multicellular organisms is largely unknown. Here, we show that the C. elegans Polycomb group (PcG) protein SOP-2 interacts with the SUMO-conjugating enzyme UBC-9 through its evolutionarily conserved SAM domain. Sumoylation of SOP-2 is required for its localization to nuclear bodies in vivo and for its physiological repression of Hox genes. Global disruption of sumoylation phenocopies a sop-2 mutation by causing ectopic Hox gene expression and homeotic transformations. Chimeric constructs in which the SOP-2 SAM domain is replaced with that derived from fruit fly or mammalian PcG proteins, but not those in which the SOP-2 SAM domain is replaced with the SAM domains of non-PcG proteins, confer appropriate in vivo nuclear localization and Hox gene repression. These observations indicate that sumoylation of PcG proteins, modulated by their evolutionarily conserved SAM domain, is essential to their physiological repression of Hox genes.


WOS | 2014

Molecular genetic evidence for overlap between general cognitive ability and risk for schizophrenia: a report from the Cognitive Genomics consorTium (COGENT)

Todd Lencz; Emma Knowles; Gail Davies; Saurav Guha; David C. Liewald; John M. Starr; Srdjan Djurovic; Ingrid Melle; Kjetil Sundet; Andrea Christoforou; Ivar Reinvang; Semanti Mukherjee; Pamela DeRosse; Astri J. Lundervold; Vidar M. Steen; Majnu John; Thomas Espeseth; Katri Räikkönen; E. Widen; Aarno Palotie; Johan G. Eriksson; I. Giegling; Bettina Konte; Masashi Ikeda; Panos Roussos; Stella G. Giakoumaki; Katherine E. Burdick; A. Payton; W. Ollier; M. Horan

It has long been recognized that generalized deficits in cognitive ability represent a core component of schizophrenia (SCZ), evident before full illness onset and independent of medication. The possibility of genetic overlap between risk for SCZ and cognitive phenotypes has been suggested by the presence of cognitive deficits in first-degree relatives of patients with SCZ; however, until recently, molecular genetic approaches to test this overlap have been lacking. Within the last few years, large-scale genome-wide association studies (GWAS) of SCZ have demonstrated that a substantial proportion of the heritability of the disorder is explained by a polygenic component consisting of many common single-nucleotide polymorphisms (SNPs) of extremely small effect. Similar results have been reported in GWAS of general cognitive ability. The primary aim of the present study is to provide the first molecular genetic test of the classic endophenotype hypothesis, which states that alleles associated with reduced cognitive ability should also serve to increase risk for SCZ. We tested the endophenotype hypothesis by applying polygenic SNP scores derived from a large-scale cognitive GWAS meta-analysis (~5000 individuals from nine nonclinical cohorts comprising the Cognitive Genomics consorTium (COGENT)) to four SCZ case-control cohorts. As predicted, cases had significantly lower cognitive polygenic scores compared to controls. In parallel, polygenic risk scores for SCZ were associated with lower general cognitive ability. In addition, using our large cognitive meta-analytic data set, we identified nominally significant cognitive associations for several SNPs that have previously been robustly associated with SCZ susceptibility. Results provide molecular confirmation of the genetic overlap between SCZ and general cognitive ability, and may provide additional insight into pathophysiology of the disorder.


Translational Psychiatry | 2014

Human cognitive ability is influenced by genetic variation in components of postsynaptic signalling complexes assembled by NMDA receptors and MAGUK proteins

William David Hill; Gail Davies; L N van de Lagemaat; Andrea Christoforou; Riccardo E. Marioni; Cres Fernandes; David C. Liewald; Mike D R Croning; A. Payton; Leone Craig; L J Whalley; M. Horan; William Ollier; Narelle K. Hansell; Margaret J. Wright; Nicholas G. Martin; Grant W. Montgomery; Vidar M. Steen; S. Le Hellard; Thomas Espeseth; Astri J. Lundervold; Ivar Reinvang; Neil Pendleton; Seth G. N. Grant; Timothy C. Bates; Ian J. Deary

Differences in general cognitive ability (intelligence) account for approximately half of the variation in any large battery of cognitive tests and are predictive of important life events including health. Genome-wide analyses of common single-nucleotide polymorphisms indicate that they jointly tag between a quarter and a half of the variance in intelligence. However, no single polymorphism has been reliably associated with variation in intelligence. It remains possible that these many small effects might be aggregated in networks of functionally linked genes. Here, we tested a network of 1461 genes in the postsynaptic density and associated complexes for an enriched association with intelligence. These were ascertained in 3511 individuals (the Cognitive Ageing Genetics in England and Scotland (CAGES) consortium) phenotyped for general cognitive ability, fluid cognitive ability, crystallised cognitive ability, memory and speed of processing. By analysing the results of a genome wide association study (GWAS) using Gene Set Enrichment Analysis, a significant enrichment was found for fluid cognitive ability for the proteins found in the complexes of N-methyl-D-aspartate receptor complex; P=0.002. Replication was sought in two additional cohorts (N=670 and 2062). A meta-analytic P-value of 0.003 was found when these were combined with the CAGES consortium. The results suggest that genetic variation in the macromolecular machines formed by membrane-associated guanylate kinase (MAGUK) scaffold proteins and their interaction partners contributes to variation in intelligence.

Collaboration


Dive into the Andrea Christoforou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge