Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Ciampalini is active.

Publication


Featured researches published by Andrea Ciampalini.


International Journal of Applied Earth Observation and Geoinformation | 2014

Analysis of building deformation in landslide area using multisensor PSInSAR™ technique

Andrea Ciampalini; Federica Bardi; Silvia Bianchini; William Frodella; Chiara Del Ventisette; Sandro Moretti; Nicola Casagli

Highlights • We analyze ground deformation velocities of the buildings in San Fratello (Sicily, Italy).• We analyze satellite PSI data using different sensors, acquired from 1992 to 2012.• We performed a damages assessment map after the landslide occurred on the 14th February 2010.• The obtained data were compared to evaluate the residual risk.


Remote Sensing | 2015

Exploitation of Amplitude and Phase of Satellite SAR Images for Landslide Mapping: The Case of Montescaglioso (South Italy)

Federico Raspini; Andrea Ciampalini; Sara Del Conte; Luca Lombardi; Massimiliano Nocentini; Giovanni Gigli; Alessandro Ferretti; Nicola Casagli

Pre- event and event landslide deformations have been detected and measured for the landslide that occurred on 3 December 2013 on the south-western slope of the Montescaglioso village (Basilicata Region, southern Italy). In this paper, ground displacements have been mapped through an integrated analysis based on a series of high resolution SAR (Synthetic Aperture Radar) images acquired by the Italian constellation of satellites COSMO-SkyMed. Analysis has been performed by exploiting both phase (through multi-image SAR interferometry) and amplitude information (through speckle tracking techniques) of the satellite images. SAR Interferometry, applied to images taken before the event, revealed a general pre-event movement, in the order of a few mm/yr, in the south-western slope of the Montescaglioso village. Highest pre-event velocities, ranging between 8 and 12 mm/yr, have been recorded in the sector of the slope where the first movement of the landslide took place. Speckle tracking, applied to images acquired before and after the event, allowed the retrieval of the 3D deformation field produced by the landslide. It also showed that ground displacements produced by the landslide have a dominant SSW component, with values exceeding 10 m for large sectors of the landslide area, with local peaks of 20 m in its central and deposit areas. Two minor landslides with a dominant SSE direction, which were detected in the upper parts of the slope, likely also occurred as secondary phenomena as consequence of the SSW movement of the main Montescaglioso landslide.


Geoenvironmental Disasters | 2017

Spaceborne, UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warning

Nicola Casagli; William Frodella; Stefano Morelli; Veronica Tofani; Andrea Ciampalini; Emanuele Intrieri; Federico Raspini; Guglielmo Rossi; Luca Tanteri; Ping Lu

BackgroundThe current availability of advanced remote sensing technologies in the field of landslide analysis allows for rapid and easily updatable data acquisitions, improving the traditional capabilities of detection, mapping and monitoring, as well as optimizing fieldwork and investigating hazardous or inaccessible areas, while granting at the same time the safety of the operators. Among Earth Observation (EO) techniques in the last decades optical Very High Resolution (VHR) and Synthetic Aperture Radar (SAR) imagery represent very effective tools for these implementations, since very high spatial resolution can be obtained by means of optical systems, and by the new generations of sensors designed for interferometric applications. Although these spaceborne platforms have revisiting times of few days they still cannot match the spatial detail or time resolution achievable by means of Unmanned Aerial Vehicles (UAV) Digital Photogrammetry (DP), and ground-based devices, such as Ground-Based Interferometric SAR (GB-InSAR), Terrestrial Laser Scanning (TLS) and InfraRed Thermography (IRT), which in the recent years have undergone a significant increase of usage, thanks to their technological development and data quality improvement, fast measurement and processing times, portability and cost-effectiveness. In this paper the potential of the abovementioned techniques and the effectiveness of their synergic use is explored in the field of landslide analysis by analyzing various case studies, characterized by different slope instability processes, spatial scales and risk management phases.ResultsSpaceborne optical Very High Resolution (VHR) and SAR data were applied at a basin scale for analysing shallow rapid-moving and slow-moving landslides in the emergency management and post- disaster phases, demonstrating their effectiveness for post-disaster damage assessment, landslide detection and rapid mapping, the definition of states of activity and updating of landslide inventory maps. The potential of UAV-DP for very high resolution periodical checks of instability phenomena was explored at a slope-scale in a selected test site; two shallow landslides were detected and characterized, in terms of areal extension, volume and temporal evolution. The combined use of GB-InSAR, TLS and IRT ground based methods, was applied for the surveying, monitoring and characterization of rock slides, unstable cliffs and translational slides. These applications were evaluated in the framework of successful rapid risk scenario evaluation, long term monitoring and emergency management activities. All of the results were validated by means of field surveying activities.ConclusionThe attempt of this work is to give a contribution to the current state of the art of advanced spaceborne and ground based techniques applied to landslide studies, with the aim of improving and extending their investigative capacity in the framework of a growing demand for effective Civil Protection procedures in pre- and post-disaster initiatives. Advantages and limitations of the proposed methods, as well as further fields of applications are evaluated for landslide-prone areas.


Remote Sensing | 2016

PSInSAR Analysis in the Pisa Urban Area (Italy): A Case Study of Subsidence Related to Stratigraphical Factors and Urbanization

Lorenzo Solari; Andrea Ciampalini; Federico Raspini; Silvia Bianchini; Sandro Moretti

Permanent Scatterer Interferometry (PSI) has been used to detect and characterize the subsidence of the Pisa urban area, which extends for 33 km2 within the Arno coastal plain (Tuscany, Italy). Two SAR (Synthetic Aperture Radar) datasets, covering the time period from 1992 to 2010, were used to quantify the ground subsidence and its temporal evolution. A geotechnical borehole database was also used to make a correspondence with the detected displacements. Finally, the results of the SAR data analysis were contrasted with the urban development of the eastern part of the city in the time period from 1978 to 2013. ERS 1/2 (European Remote-Sensing Satellite) and Envisat SAR data, processed with the PSInSAR (Permanent Scatterer InSAR) algorithm, show that the investigated area is divided in two main sectors: the southwestern part, with null or very small subsidence rates (<2 mm/year), and the eastern portion which shows a general lowering with maximum deformation rates of 5 mm/year. This second area includes deformation rates higher than 15 mm/year, corresponding to small groups of buildings. The case studies in the eastern sector of the urban area have demonstrated the direct correlation between the age of construction of buildings and the registered subsidence rates, showing the importance of urbanization as an accelerating factor for the ground consolidation process.


Journal of Maps | 2012

Integrated geomorphological mapping in the north-western sector of Agrigento (Italy)

Andrea Ciampalini; Francesca Cigna; Chiara Del Ventisette; Sandro Moretti; Vincenzo Liguori; Nicola Casagli

The geomorphological map is an essential tool to perform a proper urban planning in mountainous or hilly areas. In this paper a multidisciplinary approach to derive a 1:2000 geomorphological map is described. The proposed methodology consists of the integration between aerial photographs, acquired in 2003, and four datasets of Persistent Scatterer Interferometry (PSI) measures to update a pre-existing landslide inventory. The integrated data were used to achieve a validated geomorphological map by means of a geomorphological survey. The study area is located in southern Italy (Agrigento, Sicily). The city of Agrigento, included in the World Heritage List of UNESCO in 1997, is located on the Girgenti hill which is exposed on its northern side, to several landslide phenomena. The top of the hill is characterized by the presence of part of the cultural heritage of the city and is affected by rockfalls, rock topples and shallow-seated landslides, representing a serious risk for important historical buildings. The results demonstrate the validity of this method to achieve a suitable tool in landscape and cultural heritage management.


Arabian Journal of Geosciences | 2013

Remote sensing techniques using Landsat ETM+ applied to the detection of iron ore deposits in Western Africa

Andrea Ciampalini; Francesca Garfagnoli; Benedetta Antonielli; Sandro Moretti; Gaia Righini

Remote sensing methods enable the rapid and inexpensive mapping of surface geological and mineralogical features. This capability proves highly useful when working on isolated or inaccessible areas. In this study, several enhancements of Landsat Enhanced Thematic Mapper plus (i.e. band ratios, false colour composites and principal component analysis) were used and evaluated to obtain the best possible visualisation of iron deposits hosted in the Devonian sedimentary rocks of northwestern Africa. In particular, two test sites were chosen: southern Algeria (Djebilet area), where the literature mineralogical and geological data on iron mine fields were already available, and the Western Sahara (the southern flank of Tindouf Basin), which was investigated during a field campaign and was where the occurrence of an analogous sedimentary succession led us to hypothesise the possible presence of exploitable iron deposits. This work demonstrates the usefulness of multispectral imagery in the detection of iron-rich areas and establishes a full remote sensing procedure, which can be profitably applied to a wider region of Western Sahara and can provide interesting perspectives on the possibility of detecting new exploitable iron ore deposits in arid environments.


Remote Sensing | 2016

Space-Borne and Ground-Based InSAR Data Integration: The Åknes Test Site

Federica Bardi; Federico Raspini; Andrea Ciampalini; Lene Kristensen; Line Rouyet; Tom Rune Lauknes; Regula Frauenfelder; Nicola Casagli

This work concerns a proposal of the integration of InSAR (Interferometric Synthetic Aperture Radar) data acquired by ground-based (GB) and satellite platforms. The selected test site is the Aknes rockslide, which affects the western Norwegian coast. The availability of GB-InSAR and satellite InSAR data and the accessibility of a wide literature make the landslide suitable for testing the proposed procedure. The first step consists of the organization of a geodatabase, performed in the GIS environment, containing all of the available data. The second step concerns the analysis of satellite and GB-InSAR data, separately. Two datasets, acquired by RADARSAT-2 (related to a period between October 2008 and August 2013) and by a combination of TerraSAR-X and TanDEM-X (acquired between July 2010 and October 2012), both of them in ascending orbit, processed applying SBAS (Small BAseline Subset) method, are available. GB-InSAR data related to five different campaigns of measurements, referred to the summer seasons of 2006, 2008, 2009, 2010 and 2012, are available, as well. The third step relies on data integration, performed firstly from a qualitative point of view and later from a semi-quantitative point of view. The results of the proposed procedure have been validated by comparing them to GPS (Global Positioning System) data. The proposed procedure allowed us to better define landslide sectors in terms of different ranges of displacements. From a qualitative point of view, stable and unstable areas have been distinguished. In the sector concerning movement, two different sectors have been defined thanks to the results of the semi-quantitative integration step: the first sector, concerning displacement values higher than 10 mm, and the 2nd sector, where the displacements did not exceed a 10-mm value of displacement in the analyzed period.


Landslides | 2016

The effectiveness of high-resolution LiDAR data combined with PSInSAR data in landslide study

Andrea Ciampalini; Federico Raspini; William Frodella; Federica Bardi; Silvia Bianchini; Sandro Moretti

The spatial resolution of digital elevation models (DEMs) is an important factor for reliable landslide studies. Multi-interferometric techniques such as persistent scatterer interferometric synthetic aperture radar (PSInSAR) are used to evaluate the landslide state of activity and its ground deformation velocity, which is commonly measured along the satellite line of sight (LOS). In order to compare velocities measured by different satellites in different periods, their values can be projected along the steepest slope direction, which is the most probable direction of real movement. In order to achieve this result, DEM-derived products are needed. In this paper, the effectiveness of different DEM resolutions was evaluated in order to project ground deformation velocities measured by means of PSInSAR technique in two different case studies in the Messina Province (Sicily, southern Italy): San Fratello and Giampilieri. Three DEMs were used: (i) a 20-m resolution DEM of the Italian Military Geographic Institute (IGM), (ii) a 2-m resolution DEM derived from airborne laser scanning (ALS) light detection and ranging (LiDAR) data for the San Fratello 2010 landslide, and (iii) a 1-m resolution DEM derived from ALS LiDAR data for the area of Giampilieri. The evaluation of the applied method effectiveness was performed by comparing the DEMs elevation with those of each single permanent scatterer (PS) and projecting the measured velocities along the steepest slope direction. Results highlight that the higher DEM resolution is more suitable for this type of analysis; in particular, the PS located nearby the watershed divides is affected by geometrical problems when their velocities are projected along the steepest slope.


Journal of Maps | 2012

Photo-lithological map of the southern flank of the Tindouf Basin (Western Sahara)

Andrea Ciampalini; Francesca Garfagnoli; Benedetta Antonielli; Chiara Del Ventisette; Sandro Moretti

This paper examines the potential to map surface geology by applying specific enhancement techniques to Landsat 7 ETM+ imagery, resulting in false color composite images, which were interpreted and then validated during a field campaign. The study area is located on the southern flank of the Tindouf Basin (Western Sahara), and it is noted that there is a general lack of bibliographic data due both to the regions remote location and to its difficult political situation. A number of photo-lithological units were mapped within the Proterozoic basement and the sedimentary succession of the Tindouf Basin incisively contributing to the knowledge of the geological setting of this area.


Natural resources research | 2013

Potential Use of Remote Sensing Techniques for Exploration of Iron Deposits in Western Sahara and Southwest of Algeria

Andrea Ciampalini; Francesca Garfagnoli; Chiara Del Ventisette; Sandro Moretti

At present, Western Sahara is politically one of the most sensitive areas of the World. Its economic development could be achieved through the exploitation of mineral resources that can be found in the almost unexplored area administrated by the Saharawi Arab Democratic Republic. In this paper, we describe applications of known and cost-effective remote sensing techniques to detect and map areas containing mineral deposits, through the enhancement of Landsat ETM+ imageries. Several image processing techniques (false color composite, band ratioing, and principal component analysis) were used to highlight the presence of iron deposits. Two test areas were selected, one in Western Sahara and another one in Algeria. The occurrence of iron deposits in these test areas was assured using literature data for the Algerian test site and through a field campaign for the Western Sahara. There is good agreement between the ground truth data and the results obtained by the enhancements of the satellite images. Landsat images can be downloaded free of charge and their enhancements does not need expensive hardware or software tools. Therefore this technology could be transferred to the Saharawi technicians, enabling them to explore and manage the mineral resources of their own country independently.

Collaboration


Dive into the Andrea Ciampalini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge