Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Crespo is active.

Publication


Featured researches published by Andrea Crespo.


Journal of Clinical Sleep Medicine | 2017

Automated Screening of Children With Obstructive Sleep Apnea Using Nocturnal Oximetry: An Alternative to Respiratory Polygraphy in Unattended Settings

Daniel Álvarez; María Luz Alonso-Álvarez; Gonzalo C. Gutiérrez-Tobal; Andrea Crespo; Leila Kheirandish-Gozal; Roberto Hornero; David Gozal; Joaquín Terán-Santos; Félix del Campo

STUDY OBJECTIVES Nocturnal oximetry has become known as a simple, readily available, and potentially useful diagnostic tool of childhood obstructive sleep apnea (OSA). However, at-home respiratory polygraphy (HRP) remains the preferred alternative to polysomnography (PSG) in unattended settings. The aim of this study was twofold: (1) to design and assess a novel methodology for pediatric OSA screening based on automated analysis of at-home oxyhemoglobin saturation (SpO2), and (2) to compare its diagnostic performance with HRP. METHODS SpO2 recordings were parameterized by means of time, frequency, and conventional oximetric measures. Logistic regression models were optimized using genetic algorithms (GAs) for three cutoffs for OSA: 1, 3, and 5 events/h. The diagnostic performance of logistic regression models, manual obstructive apnea-hypopnea index (OAHI) from HRP, and the conventional oxygen desaturation index ≥ 3% (ODI3) were assessed. RESULTS For a cutoff of 1 event/h, the optimal logistic regression model significantly outperformed both conventional HRP-derived ODI3 and OAHI: 85.5% accuracy (HRP 74.6%; ODI3 65.9%) and 0.97 area under the receiver operating characteristics curve (AUC) (HRP 0.78; ODI3 0.75) were reached. For a cutoff of 3 events/h, the logistic regression model achieved 83.4% accuracy (HRP 85.0%; ODI3 74.5%) and 0.96 AUC (HRP 0.93; ODI3 0.85) whereas using a cutoff of 5 events/h, oximetry reached 82.8% accuracy (HRP 85.1%; ODI3 76.7) and 0.97 AUC (HRP 0.95; ODI3 0.84). CONCLUSIONS Automated analysis of at-home SpO2 recordings provide accurate detection of children with high pretest probability of OSA. Thus, unsupervised nocturnal oximetry may enable a simple and effective alternative to HRP and PSG in unattended settings.


international conference of the ieee engineering in medicine and biology society | 2015

Analysis and classification of oximetry recordings to predict obstructive sleep apnea severity in children.

Gonzalo C. Gutiérrez-Tobal; Leila Kheirandish-Gozal; Daniel Álvarez; Andrea Crespo; Mona F. Philby; Meelad Mohammadi; Félix del Campo; David Gozal; Roberto Hornero

Current study is focused around the potential use of oximetry to determine the obstructive sleep apnea-hypopnea syndrome (OSAHS) severity in children. Single-channel SpO2 recordings from 176 children were divided into three severity groups according to the apnea-hypopnea index (AHI): AHI<;1 events per hour (e/h), 1≤AHI<;5 e/h, and AHI ≥5 e/h. Spectral analysis was conducted to define and characterize a frequency band of interest in SpO2. Then we combined the spectral data with the 3% oxygen desaturation index (ODI3) by means of a multi-layer perceptron (MLP) neural network, in order to classify children into one of the three OSAHS severity groups. Following our MLP multiclass approach, a diagnostic protocol with capability to reduce the need of polysomnography tests by 46% could be derived. Moreover, our proposal can be also evaluated, in a binary classification task for two common AHI diagnostic cutoffs (AHI = 1 e/h and AHI= 5 e/h). High diagnostic ability was reached in both cases (84.7% and 85.8% accuracy, respectively) outperforming the clinical variable ODI3 as well as other measures reported in recent studies. These results suggest that the information contained in SpO2 could be helpful in pediatric OSAHS severity detection.


Entropy | 2017

Multiscale Entropy Analysis of Unattended Oximetric Recordings to Assist in the Screening of Paediatric Sleep Apnoea at Home

Andrea Crespo; Daniel Álvarez; Gonzalo C. Gutiérrez-Tobal; Fernando Vaquerizo-Villar; Verónica Barroso-García; María Luz Alonso-Álvarez; Joaquín Terán-Santos; Roberto Hornero; Félix del Campo

Untreated paediatric obstructive sleep apnoea syndrome (OSAS) can severely affect the development and quality of life of children. In-hospital polysomnography (PSG) is the gold standard for a definitive diagnosis though it is relatively unavailable and particularly intrusive. Nocturnal portable oximetry has emerged as a reliable technique for OSAS screening. Nevertheless, additional evidences are demanded. Our study is aimed at assessing the usefulness of multiscale entropy (MSE) to characterise oximetric recordings. We hypothesise that MSE could provide relevant information of blood oxygen saturation (SpO2) dynamics in the detection of childhood OSAS. In order to achieve this goal, a dataset composed of unattended SpO2 recordings from 50 children showing clinical suspicion of OSAS was analysed. SpO2 was parameterised by means of MSE and conventional oximetric indices. An optimum feature subset composed of five MSE-derived features and four conventional clinical indices were obtained using automated bidirectional stepwise feature selection. Logistic regression (LR) was used for classification. Our optimum LR model reached 83.5% accuracy (84.5% sensitivity and 83.0% specificity). Our results suggest that MSE provides relevant information from oximetry that is complementary to conventional approaches. Therefore, MSE may be useful to improve the diagnostic ability of unattended oximetry as a simplified screening test for childhood OSAS.


international conference of the ieee engineering in medicine and biology society | 2015

Automated analysis of nocturnal oximetry as screening tool for childhood obstructive sleep apnea-hypopnea syndrome.

Daniel Álvarez; Leila Kheirandish-Gozal; Gonzalo C. Gutiérrez-Tobal; Andrea Crespo; Mona F. Philby; Meelad Mohammadi; Félix del Campo; David Gozal; Roberto Hornero

Childhood obstructive sleep apnea-hypopnea syndrome (OSAHS) is a highly prevalent condition that negatively affects health, performance and quality of life of infants and young children. Early detection and treatment improves neuropsychological and cognitive deficits linked with the disease. The aim of this study was to assess the performance of automated analysis of blood oxygen saturation (SpO2) recordings as a screening tool for OSAHS. As an initial step, statistical, spectral and nonlinear features were estimated to compose an initial feature set. Then, fast correlation-based filter (FCBF) was applied to search for the optimum subset. Finally, the discrimination power (OSAHS negative vs. OSAHS positive) of three pattern recognition algorithms was assessed: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA) and logistic regression (LR). Three clinical cutoff points commonly used in the literature for positive diagnosis of the disease were applied: apnea-hypopnea index (AHI) of 1, 3 and 5 events per hour (e/h). Our methodology reached 88.6% accuracy (71.4% sensitivity and 100.0% specificity, 100.0% positive predictive value, and 84.0% negative predictive value) in an independent test set using QDA for a clinical cut-off point of 5 e/h. These results suggest that SpO2 nocturnal recordings may be used to develop a reliable and efficient screening tool for childhood OSAHS.


PLOS ONE | 2017

Assessment of automated analysis of portable oximetry as a screening test for moderate-to-severe sleep apnea in patients with chronic obstructive pulmonary disease

Ana M. Andrés-Blanco; Daniel Álvarez; Andrea Crespo; C. Ainhoa Arroyo; Ana Cerezo-Hernández; Gonzalo C. Gutiérrez-Tobal; Roberto Hornero; Félix del Campo

Background The coexistence of obstructive sleep apnea syndrome (OSAS) and chronic obstructive pulmonary disease (COPD) leads to increased morbidity and mortality. The development of home-based screening tests is essential to expedite diagnosis. Nevertheless, there is still very limited evidence on the effectiveness of portable monitoring to diagnose OSAS in patients with pulmonary comorbidities. Objective To assess the influence of suffering from COPD in the performance of an oximetry-based screening test for moderate-to-severe OSAS, both in the hospital and at home. Methods A total of 407 patients showing moderate-to-high clinical suspicion of OSAS were involved in the study. All subjects underwent (i) supervised portable oximetry simultaneously to in-hospital polysomnography (PSG) and (ii) unsupervised portable oximetry at home. A regression-based multilayer perceptron (MLP) artificial neural network (ANN) was trained to estimate the apnea-hypopnea index (AHI) from portable oximetry recordings. Two independent validation datasets were analyzed: COPD versus non-COPD. Results The portable oximetry-based MLP ANN reached similar intra-class correlation coefficient (ICC) values between the estimated AHI and the actual AHI for the non-COPD and the COPD groups either in the hospital (non-COPD: 0.937, 0.909–0.956 CI95%; COPD: 0.936, 0.899–0.960 CI95%) and at home (non-COPD: 0.731, 0.631–0.808 CI95%; COPD: 0.788, 0.678–0.864 CI95%). Regarding the area under the receiver operating characteristics curve (AUC), no statistically significant differences (p >0.01) between COPD and non-COPD groups were found in both settings, particularly for severe OSAS (AHI ≥30 events/h): 0.97 (0.92–0.99 CI95%) non-COPD vs. 0.98 (0.92–1.0 CI95%) COPD in the hospital, and 0.87 (0.79–0.92 CI95%) non-COPD vs. 0.86 (0.75–0.93 CI95%) COPD at home. Conclusion The agreement and the diagnostic performance of the estimated AHI from automated analysis of portable oximetry were similar regardless of the presence of COPD both in-lab and at-home. Particularly, portable oximetry could be used as an abbreviated screening test for moderate-to-severe OSAS in patients with COPD.


pan american health care exchanges | 2016

Multi-class adaboost to detect Sleep Apnea-Hypopnea Syndrome severity from oximetry recordings obtained at home

Gonzalo C. Gutiérrez-Tobal; Daniel Álvarez; Andrea Crespo; Carmen Ainhoa Arroyo; Fernando Vaquerizo-Villar; Verónica Barroso-García; F. del Campo; Roberto Hornero

This paper aims at evaluating a novel multi-class methodology to establish Sleep Apnea-Hypopnea Syndrome (SAHS) severity by the use of single-channel at-home oximetry recordings. The study involved 320 participants derived to a specialized sleep unit due to SAHS suspicion. These were assigned to one out of the four SAHS severity degrees according to the apnea-hypopnea index (AHI): no-SAHS (AHI<;5 events/hour), mild-SAHS (5≤AHI<;15 e/h), moderate-SAHS (15≤AHI<;30 e/h), and severe-SAHS (AHI≥30 e/h). A set of statistical, spectral, and non-linear features were extracted from blood oxygen saturation (SpO2) signals to characterize SAHS. Then, an optimum set among these features were automatically selected based on relevancy and redundancy analyses. Finally, a multi-class AdaBoost model, built with the optimum set of features, was obtained from a training set (60%) and evaluated in an independent test set (40%). Our AdaBoost model reached 0.386 Cohens kappa in the four-class classification task. Additionally, it reached accuracies of 89.8%, 85.8%, and 74.8% when evaluating the AHI thresholds 5 e/h, 15 e/h, and 30 e/h, respectively, outperforming the classic oxygen desaturation index. Our results suggest that SpO2 obtained at home, along with multi-class AdaBoost, are useful to detect SAHS severity.


pan american health care exchanges | 2016

Automated analysis of unattended portable oximetry by means of Bayesian neural networks to assist in the diagnosis of sleep apnea

D. Álvarez; Gonzalo C. Gutiérrez-Tobal; Fernando Vaquerizo-Villar; Verónica Barroso-García; Andrea Crespo; Carmen Ainhoa Arroyo; F. del Campo; Roberto Hornero

Sleep apnea-hypopnea syndrome (SAHS) is a chronic sleep-related breathing disorder, which is currently considered a major health problem. In-lab nocturnal polysomnography (NPSG) is the gold standard diagnostic technique though it is complex and relatively unavailable. On the other hand, the analysis of blood oxygen saturation (SpO2) from nocturnal pulse oximetry (NPO) is a simple, noninvasive, highly available and effective alternative. This study focused on the design and assessment of a neural network (NN) aimed at detecting SAHS using information from at-home unsupervised portable SpO2 recordings. A Bayesian multilayer perceptron NN (MLP-NN) was proposed, fed with complementary oximetric features properly selected. A dataset composed of 320 unattended SpO2 recordings was analyzed (60% for training and 40% for validation). The proposed Bayesian MLP-NN achieved 94.2% sensitivity, 69.6% specificity, and 89.8% accuracy in the test set. Our results suggest that automated analysis of at-home portable NPO recordings by means of Bayesian MLP-NN could be an effective and highly available technique in the context of SAHS diagnosis.


Archive | 2019

Pulse Rate Variability Analysis to Enhance Oximetry as at-Home Alternative for Sleep Apnea Diagnosing

Gonzalo C. Gutiérrez-Tobal; Daniel Álvarez; Fernando Vaquerizo-Villar; Verónica Barroso-García; Adrián Martín-Montero; Andrea Crespo; Félix del Campo; Roberto Hornero

This study focuses on the at-home Sleep apnea-hypopnea syndrome (SAHS) severity estimation. Three percent oxygen desaturation index \( (ODI_{3} ) \) from nocturnal pulse-oximetry has been commonly evaluated as simplified alternative to polysomnography (PSG), the standard in-hospital diagnostic test. However, \( ODI_{3} \) has shown limited ability to detect SAHS as it only sums up information from desaturation events. Other physiological signs of SAHS can be found in respiratory and cardiac signals, providing additional helpful data to establish SAHS and its severity. Pulse rate variability time series (PRV), also derived from nocturnal oximetry, is considered a surrogate for heart rate variability, which provides both cardiac and respiratory information. In this study, 200 oximetric recordings obtained at patients home were involved, divided into training (50%) and test (50%) groups. \( ODI_{3} \) and PRV were obtained from them, the latter being characterized by the extraction of statistical features in time domain, as well as the spectral entropy from the commonly used very low (0–0.04 Hz.), low (0.04–0.15 Hz.), and high (0.15–0.4 Hz.) frequency bands. The \( ODI_{3} \) and PRV features were joined in a multi-layer perceptron artificial neural network (MLP), trained to estimate the apnea-hypopnea index (AHI), which is the PSG-derived parameter used to diagnose SAHS. Our results showed that single \( ODI_{3} \) rightly assigned 62.0% of the subjects from the test group into one out the four SAHS severity degrees, reaching 0.470 Cohens kappa, and 0.840 intra-class correlation coefficient (ICC) with the actual AHI (accuracies of 90.0, 88.0 and 82.0% in the increasing AHI cutoffs used to define SAHS severity). By contrast, our MLP model rightly assigned 75.0% of the subjects into their corresponding SAHS severity level, reaching 0.614 \( \kappa \) and 0.904 ICC (accuracies of 93.0, 88.0 and 90.0%). These results suggest that SAHS diagnosis could be accurately conducted at-patients home by combining \( ODI_{3} \) and PRV from nocturnal oximetry


Sleep and Breathing | 2018

Assessment of oximetry-based statistical classifiers as simplified screening tools in the management of childhood obstructive sleep apnea

Andrea Crespo; Daniel Álvarez; Leila Kheirandish-Gozal; Gonzalo C. Gutiérrez-Tobal; Ana Cerezo-Hernández; David Gozal; Roberto Hornero; Félix del Campo

PurposeA variety of statistical models based on overnight oximetry has been proposed to simplify the detection of children with suspected obstructive sleep apnea syndrome (OSAS). Despite the usefulness reported, additional thorough comparative analyses are required. This study was aimed at assessing common binary classification models from oximetry for the detection of childhood OSAS.MethodsOvernight oximetry recordings from 176 children referred for clinical suspicion of OSAS were acquired during in-lab polysomnography. Several training and test datasets were randomly composed by means of bootstrapping for model optimization and independent validation. For every child, blood oxygen saturation (SpO2) was parameterized by means of 17 features. Fast correlation-based filter (FCBF) was applied to search for the optimum features. The discriminatory power of three statistical pattern recognition algorithms was assessed: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and logistic regression (LR). The performance of each automated model was evaluated for the three common diagnostic polysomnographic cutoffs in pediatric OSAS: 1, 3, and 5 events/h.ResultsBest screening performances emerged using the 1 event/h cutoff for mild-to-severe childhood OSAS. LR achieved 84.3% accuracy (95% CI 76.8–91.5%) and 0.89 AUC (95% CI 0.83–0.94), while QDA reached 96.5% PPV (95% CI 90.3–100%) and 0.91 AUC (95% CI 0.85–0.96%). Moreover, LR and QDA reached diagnostic accuracies of 82.7% (95% CI 75.0–89.6%) and 82.1% (95% CI 73.8–89.5%) for a cutoff of 5 events/h, respectively.ConclusionsAutomated analysis of overnight oximetry may be used to develop reliable as well as accurate screening tools for childhood OSAS.


Physiological Measurement | 2018

Detrended fluctuation analysis of the oximetry signal to assist in paediatric sleep apnoea-hypopnoea syndrome diagnosis

Fernando Vaquerizo-Villar; Daniel Álvarez; Leila Kheirandish-Gozal; Gonzalo C. Gutiérrez-Tobal; Verónica Barroso-García; Andrea Crespo; Félix del Campo; David Gozal; Roberto Hornero

OBJECTIVE To evaluate whether detrended fluctuation analysis (DFA) provides information that improves the diagnostic ability of the oximetry signal in the diagnosis of paediatric sleep apnoea-hypopnoea syndrome (SAHS). APPROACH A database composed of 981 blood oxygen saturation (SpO2) recordings in children was used to extract DFA-derived features in order to quantify the scaling behaviour and the fluctuations of the SpO2 signal. The 3% oxygen desaturation index (ODI3) was also computed for each subject. Fast correlation-based filter (FCBF) was then applied to select an optimum subset of relevant and non-redundant features. This subset fed a multi-layer perceptron (MLP) neural network to estimate the apnoea-hypopnoea index (AHI). MAIN RESULTS ODI3 and four features from the DFA reached significant differences associated with the severity of SAHS. An optimum subset composed of the slope in the first scaling region of the DFA profile and the ODI3 was selected using FCBF applied to the training set (60% of samples). The MLP model trained with this feature subset showed good agreement with the actual AHI, reaching an intra-class correlation coefficient of 0.891 in the test set (40% of samples). Furthermore, the estimated AHI showed high diagnostic ability, reaching an accuracy of 82.7%, 81.9%, and 91.1% using three common AHI cut-offs of 1, 5, and 10 events per hour (e h-1), respectively. These results outperformed the overall performance of ODI3. SIGNIFICANCE DFA may serve as a reliable tool to improve the diagnostic performance of oximetry recordings in the evaluation of paediatric patients with symptoms suggestive of SAHS.

Collaboration


Dive into the Andrea Crespo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. del Campo

University of Valladolid

View shared research outputs
Researchain Logo
Decentralizing Knowledge