Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Crisanti is active.

Publication


Featured researches published by Andrea Crisanti.


Cell | 1997

TRAP Is Necessary for Gliding Motility and Infectivity of Plasmodium Sporozoites

Ali A. Sultan; Vandana Thathy; Ute Frevert; Kathryn J. H. Robson; Andrea Crisanti; Victor Nussenzweig; Ruth S. Nussenzweig; Robert Ménard

Many protozoans of the phylum Apicomplexa are invasive parasites that exhibit a substrate-dependent gliding motility. Plasmodium (malaria) sporozoites, the stage of the parasite that invades the salivary glands of the mosquito vector and the liver of the vertebrate host, express a surface protein called thrombospondin-related anonymous protein (TRAP) that has homologs in other Apicomplexa. By gene targeting in a rodent Plasmodium, we demonstrate that TRAP is critical for sporozoite infection of the mosquito salivary glands and the rat liver, and is essential for sporozoite gliding motility in vitro. This suggests that in Plasmodium sporozoites, and likely in other Apicomplexa, gliding locomotion and cell invasion have a common molecular basis.


Nature | 2000

Stable germline transformation of the malaria mosquito Anopheles stephensi

Flaminia Catteruccia; Tony Nolan; Thanasis G. Loukeris; Claudia Blass; Charalambos Savakis; Fotis C. Kafatos; Andrea Crisanti

Anopheline mosquito species are obligatory vectors for human malaria, an infectious disease that affects hundreds of millions of people living in tropical and subtropical countries. The lack of a suitable gene transfer technology for these mosquitoes has hampered the molecular genetic analysis of their physiology, including the molecular interactions between the vector and the malaria parasite. Here we show that a transposon, based on the Minos element and bearing exogenous DNA, can integrate efficiently and stably into the germ line of the human malaria vector Anopheles stephensi , through a transposase-mediated process.


Nature Biotechnology | 2016

A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae

Andrew Hammond; Roberto Galizi; Kyros Kyrou; Alekos Simoni; Carla Siniscalchi; Dimitris Katsanos; Matthew Gribble; Dean A. Baker; Eric Marois; Steven Russell; Austin Burt; Nikolai Windbichler; Andrea Crisanti; Tony Nolan

Gene drive systems that enable super-Mendelian inheritance of a transgene have the potential to modify insect populations over a timeframe of a few years. We describe CRISPR-Cas9 endonuclease constructs that function as gene drive systems in Anopheles gambiae, the main vector for malaria. We identified three genes (AGAP005958, AGAP011377 and AGAP007280) that confer a recessive female-sterility phenotype upon disruption, and inserted into each locus CRISPR-Cas9 gene drive constructs designed to target and edit each gene. For each targeted locus we observed a strong gene drive at the molecular level, with transmission rates to progeny of 91.4 to 99.6%. Population modeling and cage experiments indicate that a CRISPR-Cas9 construct targeting one of these loci, AGAP007280, meets the minimum requirement for a gene drive targeting female reproduction in an insect population. These findings could expedite the development of gene drives to suppress mosquito populations to levels that do not support malaria transmission.


The EMBO Journal | 1999

CTRP is essential for mosquito infection by malaria ookinetes.

Johannes T. Dessens; Annette L. Beetsma; George Dimopoulos; Kai Wengelnik; Andrea Crisanti; Fotis C. Kafatos; Robert E. Sinden

The malaria parasite suffers severe population losses as it passes through its mosquito vector. Contributing factors are the essential but highly constrained developmental transitions that the parasite undergoes in the mosquito midgut, combined with the invasion of the midgut epithelium by the malaria ookinete (recently described as a principal elicitor of the innate immune response in the Plasmodium‐infected insect). Little is known about the molecular organization of these midgut‐stage parasites and their critical interactions with the blood meal and the mosquito vector. Elucidation of these molecules and interactions will open up new avenues for chemotherapeutic and immunological attack of parasite development. Here, using the rodent malaria parasite Plasmodium berghei, we identify and characterize the first microneme protein of the ookinete: circumsporozoite‐ and TRAP‐related protein (CTRP). We show that transgenic parasites in which the CTRP gene is disrupted form ookinetes that have reduced motility, fail to invade the midgut epithelium, do not trigger the mosquito immune response, and do not develop further into oocysts. Thus, CTRP is the first molecule shown to be essential for ookinete infectivity and, consequently, mosquito transmission of malaria.


The EMBO Journal | 1993

Thrombospondin related anonymous protein (TRAP) of Plasmodium falciparum binds specifically to sulfated glycoconjugates and to HepG2 hepatoma cells suggesting a role for this molecule in sporozoite invasion of hepatocytes.

H.-M. Müller; I. Reckmann; M. R. Hollingdale; H. Bujard; K. J. H. Robson; Andrea Crisanti

Thrombospondin related anonymous protein (TRAP) of Plasmodium falciparum contains an amino acid motif based around the sequence WSPCSVTCG which is also found in region II of the circumsporozoite (CS) proteins of different species of Plasmodium. This amino acid motif confers on the CS protein the ability to bind specifically to sulfated glycoconjugates and to hepatocytes. This suggests that the interaction of CS protein with sulfated glycoconjugates on the surface of the hepatocytes may represent the first molecular event of sporozoite invasion of liver cells. Experimental evidence indicates that TRAP is localized both on the micronemes and on the surface of P. falciparum sporozoites implying that TRAP with its putative sulfated glycoconjugate binding motif may also be involved in recognition and/or entry of hepatocytes by the sporozoite. We show here that different TRAP constructs expressed in Escherichia coli bind to sulfogalactosyl‐cerebrosides (sulfatides) and to the surface of HepG2 cells. These interactions are dependent on the presence of the conserved amino acid motif WSPCSVTCG within the sequences of the constructs and are completely inhibited by several sulfated glycoconjugates as well as by suramin, a polysulfonated drug with anti‐protozoan activity. Moreover, sporozoite invasion of HepG2 cells is inhibited by antisera raised against these different TRAP constructs and by the presence of low concentrations of suramin. We concluded that TRAP may be one of the parasite encoded molecules in the host‐parasite interaction that results in sporozoite invasion of hepatocytes.


Nature | 2011

A synthetic homing endonuclease-based gene drive system in the human malaria mosquito

Nikolai Windbichler; Miriam Menichelli; Philippos Aris Papathanos; Summer B. Thyme; Hui Li; Umut Y. Ulge; Blake T. Hovde; David Baker; Raymond J. Monnat; Austin Burt; Andrea Crisanti

Genetic methods of manipulating or eradicating disease vector populations have long been discussed as an attractive alternative to existing control measures because of their potential advantages in terms of effectiveness and species specificity. The development of genetically engineered malaria-resistant mosquitoes has shown, as a proof of principle, the possibility of targeting the mosquito’s ability to serve as a disease vector. The translation of these achievements into control measures requires an effective technology to spread a genetic modification from laboratory mosquitoes to field populations. We have suggested previously that homing endonuclease genes (HEGs), a class of simple selfish genetic elements, could be exploited for this purpose. Here we demonstrate that a synthetic genetic element, consisting of mosquito regulatory regions and the homing endonuclease gene I-SceI, can substantially increase its transmission to the progeny in transgenic mosquitoes of the human malaria vector Anopheles gambiae. We show that the I-SceI element is able to invade receptive mosquito cage populations rapidly, validating mathematical models for the transmission dynamics of HEGs. Molecular analyses confirm that expression of I-SceI in the male germline induces high rates of site-specific chromosomal cleavage and gene conversion, which results in the gain of the I-SceI gene, and underlies the observed genetic drive. These findings demonstrate a new mechanism by which genetic control measures can be implemented. Our results also show in principle how sequence-specific genetic drive elements like HEGs could be used to take the step from the genetic engineering of individuals to the genetic engineering of populations.


Journal of Biological Chemistry | 2002

Bee Venom Phospholipase Inhibits Malaria Parasite Development in Transgenic Mosquitoes

Luciano A. Moreira; Junitsu Ito; Anil Ghosh; Martin Devenport; Helge Zieler; Eappen G. Abraham; Andrea Crisanti; Tony Nolan; Flaminia Catteruccia; Marcelo Jacobs-Lorena

Malaria kills millions of people every year, and new control measures are urgently needed. The recent demonstration that (effector) genes can be introduced into the mosquito germ line to diminish their ability to transmit the malaria parasite offers new hope toward the fight of the disease (Ito, J., Ghosh, A., Moreira, L. A., Wimmer, E. A. & Jacobs-Lorena, M. (2002)Nature, 417, 452–455). Because of the high selection pressure that an effector gene imposes on the parasite population, development of resistant strains is likely to occur. In search of additional antiparasitic effector genes, we have generated transgenicAnopheles stephensi mosquitoes that express the bee venom phospholipase A2 (PLA2) gene from the gut-specific and blood-inducible Anopheles gambiaecarboxypeptidase (AgCP) promoter. Northern blot analysis indicated that the PLA2 mRNA is specifically expressed in the guts of transgenic mosquitoes with peak expression at ∼4 h after blood ingestion. Western blot and immunofluorescence analyses detected PLA2 protein in the midgut epithelia of transgenic mosquitoes from 8 to 24 h after a blood meal. Importantly, transgene expression reducedPlasmodium berghei oocyst formation by 87% on average and greatly impaired transmission of the parasite to naive mice. The results indicate that PLA2 may be used as an additional effector gene to block the development of the malaria parasite in mosquitoes.


Nature Biotechnology | 2005

An Anopheles transgenic sexing strain for vector control

Flaminia Catteruccia; Jason P Benton; Andrea Crisanti

Genetic manipulation of mosquito species that serve as vectors for human malaria is a prerequisite to the implementation of gene transfer technologies for the control of vector-borne diseases. Here we report on the development of transgenic sexing lines for the mosquito Anopheles stephensi, the principal vector of human malaria in Asia. Male mosquitoes, expressing enhanced green fluorescent protein (EGFP) under the control of the β2-tubulin promoter, are identified by their fluorescent gonads in as early as their 3rd instar larval stage, and can be efficiently separated from females using both manual methods and automated sorting machines. Importantly, β2-EGFP males are not impaired in their mating ability and viable fluorescent spermatozoa are also detected in spermathecae of wild-type females mated with transgenic males. The transgenic mosquito lines described here combine most of the features desired and required for a safe application of transgenic methodologies to malaria-control programs.


BMC Genomics | 2011

A comprehensive gene expression atlas of sex- and tissue-specificity in the malaria vector, Anopheles gambiae

Dean A. Baker; Tony Nolan; Bettina Fischer; Alex Pinder; Andrea Crisanti; Steven Russell

BackgroundThe mosquito, Anopheles gambiae, is the primary vector of human malaria, a disease responsible for millions of deaths each year. To improve strategies for controlling transmission of the causative parasite, Plasmodium falciparum, we require a thorough understanding of the developmental mechanisms, physiological processes and evolutionary pressures affecting life-history traits in the mosquito. Identifying genes expressed in particular tissues or involved in specific biological processes is an essential part of this process.ResultsIn this study, we present transcription profiles for ~82% of annotated Anopheles genes in dissected adult male and female tissues. The sensitivity afforded by examining dissected tissues found gene activity in an additional 20% of the genome that is undetected when using whole-animal samples. The somatic and reproductive tissues we examined each displayed patterns of sexually dimorphic and tissue-specific expression. By comparing expression profiles with Drosophila melanogaster we also assessed which genes are well conserved within the Diptera versus those that are more recently evolved.ConclusionsOur expression atlas and associated publicly available database, the MozAtlas (http://www.tissue-atlas.org), provides information on the relative strength and specificity of gene expression in several somatic and reproductive tissues, isolated from a single strain grown under uniform conditions. The data will serve as a reference for other mosquito researchers by providing a simple method for identifying where genes are expressed in the adult, however, in addition our resource will also provide insights into the evolutionary diversity associated with gene expression levels among species.


Molecular and Biochemical Parasitology | 1998

Molecular cloning and expression analysis of a Cryptosporidium parvum gene encoding a new member of the thrombospondin family.

Furio Spano; Lorenza Putignani; Silvia Naitza; Claudia Puri; Steve Wright; Andrea Crisanti

The apicomplexan parasite Cryptosporidium parvum invades and multiplies primarily in the brush border cells of the intestinal mucosa causing in AIDS patients a severe diarrhoea that represents a significant contributing factor leading to death. Morphological analysis indicates that the invasion machinery of C. parvum is similar to the apical complex of other parasites of the phylum Apicomplexa. We provide here evidence indicating that C. parvum also shares with these parasites a molecule crucial for the invasion of host cells. We have cloned a 3894 bp-long C. parvum cDNA encoding a protein characterised by sequence and structural similarities with members of the thrombospondin (TSP) family previously described in apicomplexan parasites of the genera Toxoplasma, Eimeria and Plasmodium. This novel C. partum molecule, the TSP-related adhesive protein of Cryptosporidium-1 (TRAP-C1), is encoded by a single copy gene containing no introns. TRAP-C1 is localised in the apical end of C. parvum sporozoites and is structurally related to the micronemal proteins MIC2 of Toxoplasma and Etp100 of Eimeria, which are involved in host-cell attachment and/or invasion. The identification of TRAP-C1 sheds new light on the molecules possibly involved in the invasion process of intestinal cells by C. parvum. We have also analysed the sequence variation of TRAP-C1 among C. parvum isolates and in the closely related species C. wrairi.

Collaboration


Dive into the Andrea Crisanti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tony Nolan

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Furio Spano

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Austin Burt

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge