Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea D'Alpaos is active.

Publication


Featured researches published by Andrea D'Alpaos.


Geophysical Research Letters | 2010

Limits on the adaptability of coastal marshes to rising sea level

Matthew L. Kirwan; Glenn R. Guntenspergen; Andrea D'Alpaos; James T. Morris; Simon M. Mudd; S. Temmerman

[1] Assumptions of a static landscape inspire predictions that about half of the world’s coastal wetlands will submerge during this century in response to sea‐level acceleration. In contrast, we use simulations from five numerical models to quantify the conditions under which ecogeomorphic feedbacks allow coastal wetlands to adapt to projected changes in sea level. In contrast to previous sea‐level assessments, we find that non‐linear feedbacks among inundation, plant growth, organic matter accretion, and sediment deposition, allow marshes to survive conservative projections of sea‐ level rise where suspended sediment concentrations are greater than ∼20 mg/L. Under scenarios of more rapid sea‐level rise (e.g., those that include ice sheet melting), marsheswill likelysubmerge neartheend ofthe 21stcentury. Our results emphasize that in areas of rapid geomorphic change, predicting the response of ecosystems to climate change requires consideration of the ability of biological processestomodifytheirphysicalenvironment.Citation: Kirwan, M. L., G. R. Guntenspergen, A. D’Alpaos, J. T. Morris, S. M. Mudd, and S. Temmerman (2010), Limits on the adaptability of coastal marshes to rising sea level, Geophys. Res. Lett., 37, L23401,


Reviews of Geophysics | 2012

Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors

Sergio Fagherazzi; Matthew L. Kirwan; Simon M. Mudd; Glenn R. Guntenspergen; Stijn Temmerman; Andrea D'Alpaos; Johan van de Koppel; John M. Rybczyk; Enrique Reyes; Christopher Craft; Jonathan Clough

Salt marshes are delicate landforms at the boundary between the sea and land. These ecosystems support a diverse biota that modifies the erosive characteristics of the substrate and mediates sediment transport processes. Here we present a broad overview of recent numerical models that quantify the formation and evolution of salt marshes under different physical and ecological drivers. In particular, we focus on the coupling between geomorphological and ecological processes and on how these feedbacks are included in predictive models of landform evolution. We describe in detail models that simulate fluxes of water, organic matter, and sediments in salt marshes. The interplay between biological and morphological processes often produces a distinct scarp between salt marshes and tidal flats. Numerical models can capture the dynamics of this boundary and the progradation or regression of the marsh in time. Tidal channels are also key features of the marsh landscape, flooding and draining the marsh platform and providing a source of sediments and nutrients to the marsh ecosystem. In recent years, several numerical models have been developed to describe the morphogenesis and long-term dynamics of salt marsh channels. Finally, salt marshes are highly sensitive to the effects of long-term climatic change. We therefore discuss in detail how numerical models have been used to determine salt marsh survival under different scenarios of sea level rise.


Journal of Geophysical Research | 2007

Landscape evolution in tidal embayments: Modeling the interplay of erosion, sedimentation, and vegetation dynamics

Andrea D'Alpaos; Stefano Lanzoni; Marco Marani; Andrea Rinaldo

We propose an ecomorphodynamic model which conceptualizes the chief land-forming processes operating on the intertwined, long-term evolution of marsh platforms and embedded tidal networks. The rapid network incision (previously addressed by the authors) is decoupled from the geomorphological dynamics of intertidal areas, governed by sediment erosion and deposition and crucially affected by the presence of vegetation. This allows us to investigate the response of tidal morphologies to different scenarios of sediment supply, colonization by halophytes, and changing sea level. Different morphological evolutionary regimes are shown to depend on marsh ecology. Marsh accretion rates, enhanced by vegetation growth, and the related platform elevations tend to decrease with distance from the creek, measured along suitably defined flow paths. The negative feedback between surface elevation and its inorganic accretion rate is reinforced by the relation between plant productivity and soil elevation in Spartina-dominated marshes and counteracted by positive feedbacks in multispecies-vegetated marshes. When evolving under constant sea level, unvegetated and Spartina-dominated marshes asymptotically tend to mean high water level (MHWL), different from multiple vegetation species marshes, which can make the evolutionary transition to upland. Equilibrium configurations below MHWL can be reached under constant rates of sea level rise, depending on sediment supply and vegetation productivity. Our analyses on marine regressions and transgressions show that when the system is in a supply-limited regime, network retreat and expansion (associated with regressions and transgressions, respectively) tend to be cyclic. Conversely, in a transport-limited regime, network reexpansion following a regression tends to take on a new configuration, showing a hysteretic behavior. Copyright 2007 by the American Geophysical Union.


Geophysical Research Letters | 2007

Biologically-controlled multiple equilibria of tidal landforms and the fate of the Venice lagoon

Marco Marani; Andrea D'Alpaos; Stefano Lanzoni; Luca Carniello; Andrea Rinaldo

Looking across a tidal landscape, can one foresee the signs of impending shifts among different geomorphological structures? This is a question of paramount importance considering the ecological, cultural and socio-economic relevance of tidal environments and their worldwide decline. In this Letter we argue affirmatively by introducing a model of the coupled tidal physical and biological processes. Multiple equilibria, and transitions among them, appear in the evolutionary dynamics of tidal landforms. Vegetation type, disturbances of the benthic biofilm, sediment availability and marine transgressions or regressions drive the bio-geomorphic evolution of the system. Our approach provides general quantitative routes to model the fate of tidal landforms, which we illustrate in the case of the Venice lagoon (Italy), for which a large body of empirical observations exists spanning at least five centuries. Such observations are reproduced by the model, which also predicts that salt marshes in the Venice lagoon may not survive climatic changes in the next century if IPCCs scenarios of high relative sea level rise occur. Copyright 2007 by the American Geophysical Union.


Journal of Geophysical Research | 2010

How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation

Simon M. Mudd; Andrea D'Alpaos; James T. Morris

[1] Plants are known to enhance sedimentation on intertidal marshes. It is unclear, however, if the dominant mechanism of enhanced sedimentation is direct organic sedimentation, particle capture by plant stems, or enhanced settling due to a reduction in turbulent kinetic energy within flows through the plant canopy. Here we combine several previously reported laboratory studies with an 18 year record of salt marsh macrophyte characteristics to quantify these mechanisms. In dense stands of Spartina alterniflora (with projected plant areas per unit volume of >10 m −1 ) and rapid flows (>0.4 m s −1 ), we find that the fraction of sedimentation from particle capture can instantaneously exceed 70%. In most marshes dominated by Spartina alterniflora, however, we find particle settling, rather than capture, will account for the majority of inorganic sedimentation. We examine a previously reported 2 mm yr −1 increase in accretion rate following a fertilization experiment in South Carolina. Prior studies at the site have ruled out organic sedimentation as the cause of this increased accretion. We apply our newly developed models of particle capture and effective settling velocity to the fertilized and control sites and find that virtually all (>99%) of the increase in accretion rates can be attributed to enhanced settling brought about by reduced turbulent kinetic energy in the fertilized canopy. Our newly developed models of biologically mediated sedimentation are broadly applicable and can be applied to marshes where data relating biomass to stem diameter and projected plant area are available.


Water Resources Research | 2003

On the drainage density of tidal networks

Marco Marani; Enrica Belluco; Andrea D'Alpaos; Andrea Defina; Stefano Lanzoni; Andrea Rinaldo

The drainage density of a network is conventionally defined as (proportional to) the ratio of its total channelized length divided by the watershed area, and in practice, it is defined by the statistical distribution and correlation structure of the lengths of unchanneled pathways. In tidal networks this requires the definition of suitable drainage directions defined by hydrodynamic (as opposed to topographic) gradients. In this paper we refine theoretically and observationally previous analyses on the drainage density of tidal networks developed within tidal marshes. The issue is quite relevant for predictions of the morphological evolution of lagoons and coastal wetlands, especially if undergoing rapid changes owing, say, to combined effects of subsidence and sea level rise. We analyze 136 watersheds within 20 salt marshes from the northern lagoon of Venice using accurate aerial photographs and field surveys taken in different years in order to study both their space and time variability. Remarkably, the tidal landforms studied show quite different physical and ecological characteristics. We find a clear tendency to develop characteristic watersheds described by exponential decays of the probability distributions of unchanneled lengths, and thereby a pointed absence of scale-free distributions which instead usually characterize fluvial settings. We further find that total channel length relates well to watershed area rather than to tidal prism, a somewhat counterintuitive result on the basis of dynamical considerations. Finally, we show that in spite of the apparent site-specific features of morphological variability, conventional measures of drainage density appear to be quite constant in space and time, indicating a similarity of form. We show that such similarity is an artifact of the Hortonian measure. Indeed, important morphological differences, most notably in stream (or link) frequency reflecting the true extent of branching innervating the marshes and the sinuosity of tidal meandering, may only be captured by introducing measures of the extent of unchanneled flow paths based on hydrodynamics rather than topography and geometry.


Journal of Geophysical Research | 2005

Tidal network ontogeny: Channel initiation and early development

Andrea D'Alpaos; Stefano Lanzoni; Marco Marani; Sergio Fagherazzi; Andrea Rinaldo

[1] The long-term morphological evolution of tidal landforms in response to physical and ecological forcings is a subject of great theoretical and practical importance. Toward the goal of a comprehensive theoretical framework suitable for large-scale, long-term applications, we set up a mathematical model of tidal channel network initiation and early development, which is assumed to act on timescales considerably shorter than those of other landscape-forming ecomorphodynamical processes of tidal systems. A hydrodynamic model capable of describing the key landforming features in small tidal embayments is coupled with a morphodynamic model which retains the description of the main physical processes responsible for tidal channel initiation and network ontogeny. The overall model is designed for the further direct inclusion of the chief ecomorphological mechanisms, e.g., related to vegetation dynamics. We assume that water surface elevation gradients provide key elements for the description of the processes that drive incision, in particular the exceedance of a stability (or maintenance) shear stress. The model describes tidal network initiation and its progressive headward extension within tidal flats through the carving of incised cross sections, where the local shear stress exceeds a predefined, possibly site-dependent threshold value. The model proves capable of providing complex network structures and of reproducing several observed characteristics of geomorphic relevance. In particular, the synthetic networks generated through the model meet distinctive network statistics as, among others, unchanneled length and area probability distributions. Copyright 2005 by the American Geophysical Union.


Journal of Geophysical Research | 2010

The importance of being coupled: Stable states and catastrophic shifts in tidal biomorphodynamics

Marco Marani; Andrea D'Alpaos; Stefano Lanzoni; Luca Carniello; Andrea Rinaldo

We describe and apply a point model of the joint evolution of tidal landforms and biota which incorporates the dynamics of intertidal vegetation; benthic microbial assemblages; erosional, depositional, and sediment exchange processes; wind-wave dynamics, and relative sea level change. Alternative stable states and punctuated equilibria emerge, characterized by possible sudden transitions of the system state, governed by vegetation type, disturbances of the benthic biofilm, sediment availability, and marine transgressions or regressions. Multiple stable states are suggested to result from the interplay of erosion, deposition, and biostabilization, providing a simple explanation for the ubiquitous presence of the typical landforms observed in tidal environments worldwide. The main properties of accessible equilibrium states prove robust with respect to specific modeling assumptions and are thus identified as characteristic dynamical features of tidal systems. Halophytic vegetation emerges as a key stabilizing factor through wave dissipation, rather than a major trapping agent, because the total inorganic deposition flux is found to be largely independent of standing biomass under common supply-limited conditions. The organic sediment production associated with halophytic vegetation represents a major contributor to the overall deposition flux, thus critically affecting the ability of salt marshes to keep up with high rates of relative sea level rise. The type and number of available equilibria and the possible shifts among them are jointly driven and controlled by the available suspended sediment, the rate of relative sea level change, and vegetation and microphytobenthos colonization. The explicit description of biotic and abiotic processes thus emerges as a key requirement for realistic and predictive models of the evolution of a tidal system as a whole. The analysis of such coupled processes finally indicates that hysteretic switches between stable states arise because of differences in the threshold values of relative sea level rise inducing transitions from vegetated to unvegetated equilibria and vice versa.


Water Resources Research | 2005

A geomorphic study of lagoonal landforms

Alessandra Feola; Enrica Belluco; Andrea D'Alpaos; Stefano Lanzoni; Marco Marani; Andrea Rinaldo

We perform an analysis of the observational morphological structure of a tidal landscape aimed at examining key assumptions on the geomorphological evolution of wetlands, lagoons, estuarine areas and tidal environments in general. The issues addressed pertain to the statistical measures and the morphodynamic implications of topological or metric properties of the observed landforms, in particular their scale-dependent (or invariant) characters that might suggest self-organized dynamical origins. Field surveys and remote sensing are employed here to accurately characterize different morphodynamic features of a lagoonal environment. Of particular novelty and interest is the structure of landscape-forming shear stresses (properly calculated in unchanneled portions of the landscape) which suggests the viability of threshold models of incision for the formation of tidal channel networks. Distinctive geomorphic indicators, suitable for comparative purposes with modeling of the long-term evolution of tidal systems, are also pointed out. We finally discuss space-distributed analyses of ecogeomorphological properties which strongly suggest the dominance of subvertical processes in the control of the distribution of halophytic vegetation, a key morphodynamic factor. Copyright 2005 by the American Geophysical Union.


Journal of Geophysical Research | 2010

On the tidal prism–channel area relations

Andrea D'Alpaos; Stefano Lanzoni; Marco Marani; Andrea Rinaldo

We verify the broad applicability of tidal prism cross-sectional area relationships, originally proposed to relate the total water volume entering a lagoon during a characteristic tidal cycle (the tidal prism) to the size of its inlet, to arbitrary sheltered cross sections within a tidal network. We suggest, with reasonable approximation defining a statistical tendency rather than a pointwise equivalence, that the regime of tidal channels may be anywhere related to local landscape-forming prisms embedded in a characteristic spring tide oscillation. The importance of the proposed extension stems from its potential for quantitative predictions of the long-term morphological evolution of whole tidal landforms, in response to forcings affecting tidal prisms. This is the case, in particular, for alterations of relative mean sea levels possibly driven by climate change. Various 1-D and 2-D morphodynamic and hydrodynamic models are employed to evaluate peak flow rates, bottom shear stresses, and the ensuing local tidal prisms. One-dimensional morphodynamic models describing both the longitudinal and cross-sectional evolution of tidal channels are used to verify the validity of the relationship for sheltered sections. Relevant hydrodynamic features determined through accurate 2-D numerical models are compared with those obtained through time-invariant equivalents, defining a mean watershed by an energy landscape from averaged free surface gradients. Empirical evidence gathered within the lagoon of Venice (Italy) supports the proposed extension. We conclude that the geomorphic law relating tidal prisms to channel cross-sectional areas anywhere within a tidal landscape is a valuable tool for studies on long-term tidal geomorphology.

Collaboration


Dive into the Andrea D'Alpaos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge