Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea D. Lehmann is active.

Publication


Featured researches published by Andrea D. Lehmann.


European Journal of Pharmaceutics and Biopharmaceutics | 2011

An in vitro triple cell co-culture model with primary cells mimicking the human alveolar epithelial barrier

Andrea D. Lehmann; Nicole Daum; Michael Bur; Claus-Michael Lehr; Peter Gehr; Barbara Rothen-Rutishauser

A triple cell co-culture model was recently established by the authors, consisting of either A549 or 16HBE14o- epithelial cells, human blood monocyte-derived macrophages and dendritic cells, which offers the possibility to study the interaction of xenobiotics with those cells. The 16HBE14o- containing co-culture model mimics the airway epithelial barrier, whereas the A549 co-cultures mimic the alveolar type II-like epithelial barrier. The goal of the present work was to establish a new triple cell co-culture model composed of primary alveolar type I-like cells isolated from human lung biopsies (hAEpC) representing a more realistic alveolar epithelial barrier wall, since type I epithelial cells cover >93% of the alveolar surface. Monocultures of A549 and 16HBE14o- were morphologically and functionally compared with the hAEpC using laser scanning microscopy, as well as transmission electron microscopy, and by determining the epithelial integrity. The triple cell co-cultures were characterized using the same methods. It could be shown that the epithelial integrity of hAEpC (mean ± SD, 1180 ± 188 Ω cm(2)) was higher than in A549 (172 ± 59 Ω cm(2)) but similar to 16HBE14o- cells (1469 ± 156 Ω cm(2)). The triple cell co-culture model with hAEpC (1113 ± 30 Ω cm(2)) showed the highest integrity compared to the ones with A549 (93 ± 14 Ω cm(2)) and 16HBE14o- (558 ± 267 Ω cm(2)). The tight junction protein zonula occludens-1 in hAEpC and 16HBE14o- were more regularly expressed but not in A549. The epithelial alveolar model with hAEpC combined with two immune cells (i.e. macrophages and dendritic cells) will offer a novel and more realistic cell co-culture system to study possible cell interactions of inhaled xenobiotics and their toxic potential on the human alveolar type I epithelial wall.


Small | 2010

Fluorescent–Magnetic Hybrid Nanoparticles Induce a Dose-Dependent Increase in Proinflammatory Response in Lung Cells in vitro Correlated with Intracellular Localization

Andrea D. Lehmann; Wolfgang J. Parak; Feng Zhang; Zulqurnain Ali; Carlheinz Röcker; G. Ulrich Nienhaus; Peter Gehr; Barbara Rothen-Rutishauser

Iron-platinum nanoparticles embedded in a poly(methacrylic acid) (PMA) polymer shell and fluorescently labeled with the dye ATTO 590 (FePt-PMA-ATTO-2%) are investigated in terms of their intracellular localization in lung cells and potential to induce a proinflammatory response dependent on concentration and incubation time. A gold core coated with the same polymer shell (Au-PMA-ATTO-2%) is also included. Using laser scanning and electron microscopy techniques, it is shown that the FePt-PMA-ATTO-2% particles penetrate all three types of cell investigated but to a higher extent in macrophages and dendritic cells than epithelial cells. In both cell types of the defense system but not in epithelial cells, a particle-dose-dependent increase of the cytokine tumor necrosis factor alpha (TNFalpha) is found. By comparing the different nanoparticles and the mere polymer shell, it is shown that the cores combined with the shells are responsible for the induction of proinflammatory effects and not the shells alone. It is concluded that the uptake behavior and the proinflammatory response upon particle exposure are dependent on the time, cell type, and cell culture.


Endocrinology | 2010

Regulation of Placental Growth by Aldosterone and Cortisol

Carine Moser; Eliyahu V. Khankin; Simone Schüller; Geneviève Escher; Brigitte M. Frey; C.-Bettina Portmann; Marc Baumann; Andrea D. Lehmann; Daniel Surbek; S. Ananth Karumanchi; Felix J. Frey; Markus G. Mohaupt

During pregnancy, trophoblasts grow to adapt the feto-maternal unit to fetal requirements. Aldosterone and cortisol levels increase, the latter being inactivated by a healthy placenta. By contrast, preeclamptic placental growth is reduced while aldosterone levels are low and placental cortisol tissue levels are high due to improper deactivation. Aldosterone acts as a growth factor in many tissues, whereas cortisol inhibits growth. We hypothesized that in preeclampsia low aldosterone and enhanced cortisol availability might mutually affect placental growth and function. Proliferation of cultured human trophoblasts was time- and dose-dependently increased with aldosterone (P < 0.04 to P < 0.0001) and inhibited by spironolactone and glucocorticoids (P < 0.01). Mineralo- and glucocorticoid receptor expression and activation upon agonist stimulation was verified by visualization of nuclear translocation of the receptors. Functional aldosterone deficiency simulated in pregnant mice by spironolactone treatment (15 μg/g body weight/day) led to a reduced fetal umbilical blood flow (P < 0.05). In rat (P < 0.05; R(2) = 0.2055) and human (X(2) = 3.85; P = 0.0249) pregnancy, placental size was positively related to plasma aldosterone. Autocrine production of these steroid hormones was excluded functionally and via the absence of specific enzymatic transcripts for CYP11B2 and CYP11B1. In conclusion, activation of mineralocorticoid receptors by maternal aldosterone appears to be required for trophoblast growth and a normal feto-placental function. Thus, low aldosterone levels and enhanced cortisol availability may be one explanation for the reduced placental size in preeclampsia and related disorders.


Particle and Fibre Toxicology | 2009

Diesel exhaust particles modulate the tight junction protein occludin in lung cells in vitro

Andrea D. Lehmann; Fabian Blank; Oliver Baum; Peter Gehr; Barbara Rothen-Rutishauser

BackgroundUsing an in vitro triple cell co-culture model consisting of human epithelial cells (16HBE14o-), monocyte-derived macrophages and dendritic cells, it was recently demonstrated that macrophages and dendritic cells create a transepithelial network between the epithelial cells to capture antigens without disrupting the epithelial tightness. The expression of the different tight junction proteins in macrophages and dendritic cells, and the formation of tight junction-like structures with epithelial cells has been demonstrated. Immunofluorescent methods combined with laser scanning microscopy and quantitative real-time polymerase chain reaction were used to investigate if exposure to diesel exhaust particles (DEP) (0.5, 5, 50, 125 μg/ml), for 24 h, can modulate the expression of the tight junction mRNA/protein of occludin, in all three cell types.ResultsOnly the highest dose of DEP (125 μg/ml) seemed to reduce the occludin mRNA in the cells of the defence system however not in epithelial cells, although the occludin arrangement in the latter cell type was disrupted. The transepithelial electrical resistance was reduced in epithelial cell mono-cultures but not in the triple cell co-cultures, following exposure to high DEP concentration. Cytotoxicity was not found, in either epithelial mono-cultures nor in triple cell co-cultures, after exposure to the different DEP concentrations.ConclusionWe concluded that high concentrations of DEP (125 μg/ml) can modulate the tight junction occludin mRNA in the cells of the defence system and that those cells play an important role maintaining the epithelial integrity following exposure to particulate antigens in lung cells.


Immunobiology | 2011

Macrophages and dendritic cells express tight junction proteins and exchange particles in an in vitro model of the human airway wall

Fabian Blank; Marc Wehrli; Andrea D. Lehmann; Oliver Baum; Peter Gehr; Christophe von Garnier; Barbara Rothen-Rutishauser

The human airway epithelium serves as structural and functional barrier against inhaled particulate antigen. Previously, we demonstrated in an in vitro epithelial barrier model that monocyte derived dendritic cells (MDDC) and monocyte derived macrophages (MDM) take up particulate antigen by building a trans-epithelial interacting network. Although the epithelial tight junction (TJ) belt was penetrated by processes of MDDC and MDM, the integrity of the epithelium was not affected. These results brought up two main questions: (1) Do MDM and MDDC exchange particles? (2) Are those cells expressing TJ proteins, which are believed to interact with the TJ belt of the epithelium to preserve the epithelial integrity? The expression of TJ and adherens junction (AJ) mRNA and proteins in MDM and MDDC monocultures was determined by RT-PCR, and immunofluorescence, respectively. Particle uptake and exchange was quantified by flow cytometry and laser scanning microscopy in co-cultures of MDM and MDDC exposed to polystyrene particles (1 μm in diameter). MDM and MDDC constantly expressed TJ and AJ mRNA and proteins. Flow cytometry analysis of MDM and MDDC co-cultures showed increased particle uptake in MDDC while MDM lost particles over time. Quantitative analysis revealed significantly higher particle uptake by MDDC in co-cultures of epithelial cells with MDM and MDDC present, compared to co-cultures containing only epithelial cells and MDDC. We conclude from these findings that MDM and MDDC express TJ and AJ proteins which could help to preserve the epithelial integrity during particle uptake and exchange across the lung epithelium.


Veterinary Microbiology | 2010

Lethal toxin of Clostridium sordellii is associated with fatal equine atypical myopathy

Lucia Unger-Torroledo; Reto Straub; Andrea D. Lehmann; Franziska Graber; Christina Stahl; Joachim Frey; Vinzenz Gerber; Hans Hoppeler; Oliver Baum

The lethal toxin of Clostridium sordellii (TcsL) evokes severe, mostly fatal disease patterns like toxic shock syndrome in humans and animals. Since this large clostridial toxin-induced severe muscle damaging when injected intramuscularly into mice, we hypothesized that TcsL is also associated with equine atypical myopathy (EAM), a fatal myodystrophy of hitherto unknown etiology. Transmission electron microscopy revealed skeletal and heart muscles of EAM-affected horses to undergo degeneration ultrastructurally similar to the damage found in TcsL-treated mice. Performing immunohistochemistry, myofibers of EAM-affected horses specifically reacted with sera derived from horses with EAM as well as an antibody specific for the N-terminal part of TcsL, while both antibodies failed to bind to the myofibers of either healthy horses or those with other myopathies. The presence of TcsL in myofibers of horses with EAM suggests that it plays a role as trigger or even as lethal factor in this disease.


Physiological and Biochemical Zoology | 2010

Recent advances into understanding some aspects of the structure and function of mammalian and avian lungs

John N. Maina; John B. West; Sandra Orgeig; Nj Foot; Christopher B. Daniels; Stephen G. Kiama; Peter Gehr; Christian Mühlfeld; Fabian Blank; Loretta Müller; Andrea D. Lehmann; Christina Brandenberger; Barbara Rothen-Rutishauser

Recent findings are reported about certain aspects of the structure and function of the mammalian and avian lungs that include (a) the architecture of the air capillaries (ACs) and the blood capillaries (BCs); (b) the pulmonary blood capillary circulatory dynamics; (c) the adaptive molecular, cellular, biochemical, compositional, and developmental characteristics of the surfactant system; (d) the mechanisms of the translocation of fine and ultrafine particles across the airway epithelial barrier; and (e) the particle‐cell interactions in the pulmonary airways. In the lung of the Muscovy duck Cairina moschata, at least, the ACs are rotund structures that are interconnected by narrow cylindrical sections, while the BCs comprise segments that are almost as long as they are wide. In contrast to the mammalian pulmonary BCs, which are highly compliant, those of birds practically behave like rigid tubes. Diving pressure has been a very powerful directional selection force that has influenced phenotypic changes in surfactant composition and function in lungs of marine mammals. After nanosized particulates are deposited on the respiratory tract of healthy human subjects, some reach organs such as the brain with potentially serious health implications. Finally, in the mammalian lung, dendritic cells of the pulmonary airways are powerful agents in engulfing deposited particles, and in birds, macrophages and erythrocytes are ardent phagocytizing cellular agents. The morphology of the lung that allows it to perform different functions—including gas exchange, ventilation of the lung by being compliant, defense, and secretion of important pharmacological factors—is reflected in its “compromise design.”


Nanotoxicology | 2013

Can the Ames test provide an insight into nano-object mutagenicity? Investigating the interaction between nano-objects and bacteria

Martin J. D. Clift; David O. Raemy; Carola Endes; Zulqurnain Ali; Andrea D. Lehmann; Christina Brandenberger; Alke Petri-Fink; Peter Wick; Wolfgang J. Parak; Peter Gehr; Roel P. F. Schins; Barbara Rothen-Rutishauser

Abstract The aim of this study was to assess the interaction of a series of well characterised nano-objects with the Gram negative bacterium Salmonella typhimurium, and how such an interaction may relate to the potential mutagenicity of nano-objects. Transmission electron microscopy showed that nano-objects (Au-PMA-ATTO NPs, CeO2 NPs, SWCNTs and MWCNTs), as well as CAFs entered S. typhimurium. Only DEPs did not penetrate/enter the bacteria, however, were the only particle stimulus to induce any significant mutagenicity through the Ames test. Comparison with a sophisticated 3D in vitro cell model showed CAFs, DEPs, SWCNTs and MWCNTs to cause a significant increase in mammalian cell proliferation, whilst both the Au-PMA-ATTO NPs and CeO2 NPs had not significant adverse effects. In conclusion, these results indicate that various of different nano-objects are able to penetrate the double-lipid bilayer of Gram negative bacteria, although the Ames test may not be a good indicator for nano-object mutagenicity.


Medicine and Science in Sports and Exercise | 2009

Seasonal Variation of V˙O2max and the V˙O2-Work Rate Relationship in Elite Alpine Skiers

Micah Gross; Fabio Andreas Breil; Andrea D. Lehmann; Hans Hoppeler; Michael Vogt

PURPOSE Alpine ski performance relates closely to both anaerobic and aerobic capacities. During their competitive season, skiers greatly reduce endurance and weight training, and on-snow training becomes predominant. To typify this shift, we compared exhaustive ramp cycling and squat (SJ) and countermovement jumping (CMJ) performance in elite males before and after their competitive season. RESULTS In postseason compared with preseason: 1) maximal oxygen uptake (VO 2 max) normalized to bodyweight was higher (55.2 +/- 5.2 vs 52.7 +/- 3.6 mL x kg(-1) x min(-1), P < 0.01), but corresponding work rate (W) was unchanged; 2) at ventilatory thresholds (VT), absolute and relative work rates were similar but heart rates were lower; 3) VO2/W slope was greater (9.59 +/- 0.6 vs 9.19 +/- 0.4 mL O2 x min(-1) x W(-1), P = 0.02), with similar flattening (P < 0.01) above V T1 at both time points; and 4) jump height was greater in SJ (47.4 +/- 4.4 vs 44.7 +/- 4.3 cm, P < 0.01) and CMJ (52.7 +/- 4.6 vs 50.4 +/- 5.0 cm, P < 0.01). DISCUSSION We believe that aerobic capacity and leg power were constrained in preseason and that improvements primarily reflected an in-season recovery from a fatigued state, which was caused by incongruous preseason training. Residual adaptations to high-altitude exposure in preseason could have also affected the results. Nonetheless, modern alpine skiing seemingly provides an ample cardiovascular training stimulus for skiers to maintain their aerobic capacities during the racing season. CONCLUSIONS We conclude that aerobic fitness and leg explosiveness can be maintained in-season but may be compromised by heavy or excessive preseason training. In addition, ramp test V O2/W slope analysis could be useful for monitoring both positive and negative responses to training.


Comprehensive Physiology | 2011

Endocytosis of environmental and engineered micro- and nanosized particles.

Peter Gehr; Martin J. D. Clift; Christina Brandenberger; Andrea D. Lehmann; Fabian Herzog; Barbara Rothen-Rutishauser

There are many studies with cells to find out how particles interact with them. In contrast to micronsized particles, which are actively taken up by phagocytosis or macropinocytosis, nanosized particles may be taken up by cells through different endocytic pathways or by another, yet to be defined mechanism. There is increasing evidence that it is the nanosized particles, which are a particular risk because of their high content of organic chemicals and their pro-oxidative potential due to the high surface-to-volume ratio of the particles as compared to the bulk material. It is the goal of this article to create an understanding for the interaction of particles with biological systems, with particular consideration of the interaction of nanoparticles (NPs) with lung cells. One is attempting to understand, how NPs interact with cellular membranes, as it is hardly known, how they are taken up by cells, how they are trafficking in cells, and how they interact with subcellular compartments, such as with mitochondria or with the nucleus. Cells tend to defend themselves against any foreign material, which is taken up. In general, they try to eliminate particulate intruders and this is what they usually manage with micronsized particles. However, with NPs it is different. NPs may not be eliminated easily, and, hence may stimulate the cells to react in an unfavorable way. What we can learn is that NPs behave differently than microparticles.

Collaboration


Dive into the Andrea D. Lehmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Loretta Müller

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge