Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Endimiani is active.

Publication


Featured researches published by Andrea Endimiani.


Antimicrobial Agents and Chemotherapy | 2011

Outbreak of Colistin-Resistant, Carbapenem-Resistant Klebsiella pneumoniae in Metropolitan Detroit, Michigan

Dror Marchaim; Teena Chopra; Jason M. Pogue; Federico Perez; Andrea M. Hujer; Susan D. Rudin; Andrea Endimiani; Shiri Navon-Venezia; Jatinder Hothi; Jessica Slim; Christopher Blunden; Maryann Shango; Paul R. Lephart; Hossein Salimnia; Deborah Reid; Judy Moshos; Wasif Hafeez; Suchitha Bheemreddy; Ting Yi Chen; Sorabh Dhar; Robert A. Bonomo; Keith S. Kaye

ABSTRACT Carbapenem-resistant Klebsiella pneumoniae has spread worldwide and throughout the United States. Colistin is used extensively to treat infections with this organism. We describe a cluster of colistin-resistant, carbapenem-resistant K. pneumoniae infection cases involving three institutions in Detroit, MI. A cluster of five cases of colistin-resistant, carbapenem-resistant K. pneumoniae was identified at Detroit Medical Center (DMC) from 27 July to 22 August 2009. Epidemiologic data were collected, and transmission opportunities were analyzed. Isolates were genotyped by using pulsed-field gel electrophoresis and repetitive extragenic palindromic PCR. Data regarding the use of colistin were obtained from pharmacy records. The index case of colistin-resistant, carbapenem-resistant K. pneumoniae was followed 20 days later by four additional cases occurring in a 6-day interval. All of the patients, at some point, had stayed at one particular institution. The mean number of opportunities for transmission between patients was 2.3 ± 0.5, and each patient had at least one opportunity for transmission with one of the other patients. Compared to 60 colistin-susceptible, carbapenem-resistant K. pneumoniae controls isolated in the previous year at DMC, case patients were significantly older (P = 0.05) and the carbapenem-resistant K. pneumoniae organisms isolated from them displayed much higher MICs to imipenem (P < 0.001). Colistin use was not enhanced in the months preceding the outbreak. Genotyping revealed two closely related clones. This report of a colistin-resistant, carbapenem-resistant K. pneumoniae outbreak is strongly linked to patient-to-patient transmission. Controlling the spread and novel emergence of bacteria with this phenotype is of paramount importance.


Clinical Infectious Diseases | 2012

Transmission Dynamics of Extended-Spectrum β-lactamase–Producing Enterobacteriaceae in the Tertiary Care Hospital and the Household Setting

Belinda Y. Betsch; Katja Bögli-Stuber; Nadja Heiniger; Markus Stadler; Marianne Küffer; Andreas Kronenberg; Christine Rohrer; Suzanne Aebi; Andrea Endimiani; Sara Christine Droz; Kathrin Mühlemann

Transmission of extended-spectrum β-lactamase (ESBL)–producing Enterobacteriaceae in households outweighs nosocomial dissemination in the non-outbreak setting. Importation of ESBL producers into the hospitals is as frequent as transmission during hospital stay. ESBL–Klebsiella pneumoniae might be more efficiently transmitted within the hospital than ESBL–Escherichia coli.


Antimicrobial Agents and Chemotherapy | 2010

In Vitro Activity of Fosfomycin Against blaKPC-containing Klebsiella pneumoniae Isolates including those nonsusceptible to tigecycline and/or colistin

Andrea Endimiani; Gopi Patel; Kristine M. Hujer; Mahesh Swaminathan; Federico Perez; Louis B. Rice; Michael R. Jacobs; Robert A. Bonomo

ABSTRACT In vitro activity of fosfomycin was evaluated against 68 blaKPC-possessing Klebsiella pneumoniae (KpKPC) isolates, including 23 tigecycline- and/or colistin-nonsusceptible strains. By agar dilution, 93% of the overall KpKPC were susceptible (MIC50/90 of 16/64 μg/ml, respectively). The subgroup of 23 tigecycline- and/or colistin-nonsusceptible strains showed susceptibility rates of 87% (MIC50/90 of 32/128 μg/ml, respectively). Notably, 5 out of 6 extremely drug-resistant (tigecycline and colistin nonsusceptible) KpKPC were susceptible to fosfomycin. Compared to agar dilution, disk diffusion was more accurate than Etest.


Drug Resistance Updates | 2013

Extended-spectrum cephalosporin-resistant gram-negative organisms in livestock: An emerging problem for human health?

Salome Nadja Seiffert; Vincent Perreten; Andrea Endimiani

Escherichia coli, Salmonella spp. and Acinetobacter spp. are important human pathogens. Serious infections due to these organisms are usually treated with extended-spectrum cephalosporins (ESCs). However, in the past two decades we have faced a rapid increasing of infections and colonization caused by ESC-resistant (ESC-R) isolates due to production of extended-spectrum-β-lactamases (ESBLs), plasmid-mediated AmpCs (pAmpCs) and/or carbapenemase enzymes. This situation limits drastically our therapeutic armamentarium and puts under peril the human health. Animals are considered as potential reservoirs of multidrug-resistant (MDR) Gram-negative organisms. The massive and indiscriminate use of antibiotics in veterinary medicine has contributed to the selection of ESC-R E. coli, ESC-R Salmonella spp. and, to less extent, MDR Acinetobacter spp. among animals, food, and environment. This complex scenario is responsible for the expansion of these MDR organisms which may have life-threatening clinical significance. Nowadays, the prevalence of food-producing animals carrying ESC-R E. coli and ESC-R Salmonella (especially those producing CTX-M-type ESBLs and the CMY-2 pAmpC) has reached worryingly high values. More recently, the appearance of carbapenem-resistant isolates (i.e., VIM-1-producing Enterobacteriaceae and NDM-1 or OXA-23-producing Acinetobacter spp.) in livestock has even drawn greater concerns. In this review, we describe the aspects related to the spread of the above MDR organisms among pigs, cattle, and poultry, focusing on epidemiology, molecular mechanisms of resistance, impact of antibiotic use, and strategies to contain the overall problem. The link and the impact of ESC-R organisms of livestock origin for the human scenario are also discussed.


Antimicrobial Agents and Chemotherapy | 2004

Emergence in Klebsiella pneumoniae and Enterobacter cloacae Clinical Isolates of the VIM-4 Metallo-β-Lactamase Encoded by a Conjugative Plasmid

Francesco Luzzaro; Jean Denis Docquier; Céline Colinon; Andrea Endimiani; Gianluigi Lombardi; Gianfranco Amicosante; Gian Maria Rossolini; Antonio Toniolo

ABSTRACT Resistance to carbapenems is an emerging problem among gram-negative hospital pathogens. A transferable plasmid encoding the VIM-4 metallo-β-lactamase was detected in isolates of Klebsiella pneumoniae and Enterobacter cloacae obtained from a single patient under carbapenem therapy. Thus, enterobacteria appear to increasingly contribute to the spread of VIM-type enzymes.


Antimicrobial Agents and Chemotherapy | 2003

IMP-12, a New Plasmid-Encoded Metallo-β-Lactamase from a Pseudomonas putida Clinical Isolate

Jean Denis Docquier; Maria Letizia Riccio; Claudia Mugnaioli; Francesco Luzzaro; Andrea Endimiani; Antonio Toniolo; Gianfranco Amicosante; Gian Maria Rossolini

ABSTRACT A Pseudomonas putida strain showing broad-spectrum resistance to β-lactams, including expanded-spectrum cephalosporins and carbapenems, was isolated from a patient with a urinary tract infection at the University Hospital of Varese in northern Italy. The isolate was found to produce metallo-β-lactamase activity and to harbor a 50-kb plasmid, named pVA758, carrying a new blaIMP determinant, named blaIMP-12. Plasmid pVA758 was not self-transferable by conjugation to either Escherichia coli or Pseudomonas aeruginosa but could be introduced by electroporation and maintained in the latter host, where it conferred resistance or decreased susceptibility to various β-lactams. The IMP-12 enzyme is quite divergent from other IMP variants: its closest relatives are IMP-8 and IMP-2 (89 and 88% sequence identity, respectively), and IMP-1 is 85% identical to IMP-12. The blaIMP-12 determinant is carried on an integron-borne gene cassette whose attC recombination site is related to those present in cassettes containing blaIMP-1, blaIMP-6, blaIMP-7, blaIMP-10, and blaIMP-11 and unrelated to that present in cassettes containing blaIMP-2 and blaIMP-8. IMP-12 was overproduced in E. coli by using a T7-based expression system and was purified by cation-exchange chromatography followed by gel filtration. Kinetic analysis revealed that, like other IMP variants, IMP-12 exhibits an overall preference for cephalosporins and carbapenems rather than for penicillins and does not hydrolyze temocillin and aztreonam. However, IMP-12 also exhibits some notable functional differences from other IMP variants, including uniformly poor activity toward penicillins (kcat/Km values, around 104 M−1 · s−1) and a remarkably high Km (around 900 μM) for imipenem.


Antimicrobial Agents and Chemotherapy | 2005

Proteus mirabilis Bloodstream Infections: Risk Factors and Treatment Outcome Related to the Expression of Extended-Spectrum β-Lactamases

Andrea Endimiani; Francesco Luzzaro; Gioconda Brigante; Mariagrazia Perilli; Gianluigi Lombardi; Gianfranco Amicosante; Gian Maria Rossolini; Antonio Toniolo

ABSTRACT Bloodstream infection (BSI) due to Proteus mirabilis strains is a relatively uncommon clinical entity, and its significance has received little attention. This study was initiated to evaluate risk factors and treatment outcome of BSI episodes due to P. mirabilis producing extended-spectrum β-lactamases (ESBLs). Twenty-five BSI episodes caused by P. mirabilis occurred at our hospital (Ospedale di Circolo e Fondazione Macchi, Varese, Italy) over a 7.5-year period. Phenotypic and molecular methods were used to assess ESBL production. Clinical records of BSI patients were examined retrospectively. Demographic data, underlying diseases (according to McCabe and Jackson classification and Charlson weighted index), risk factors, and treatment outcome were investigated by comparing cases due to ESBL-positive strains to cases due to ESBL-negative strains. Eleven isolates were found to express ESBLs (TEM-52 or TEM-92). The remaining 14 isolates were ESBL negative and were uniformly susceptible to extended-spectrum cephalosporins and monobactams. Comparison of the two groups showed that previous hospitalization in a nursing home (P = 0.04) and use of bladder catheter (P = 0.01) were significant risk factors for infections due to ESBL-positive strains. In addition, cases due to ESBL-positive strains showed a significantly higher mortality attributable to BSI (P = 0.04). BSI cases due to ESBL-negative isolates uniformly responded to therapy, whereas 5/11 cases due to ESBL-positive isolates failed to respond (P < 0.01). Use of carbapenems was associated with complete response independently of ESBL production. Therapeutic failure and mortality may occur in BSI episodes caused by ESBL-positive P. mirabilis isolates. Thus, recognition of ESBL-positive strains appears to be critical for the clinical management of patients with systemic P. mirabilis infections.


Antimicrobial Agents and Chemotherapy | 2009

ACHN-490, a Neoglycoside with Potent In Vitro Activity against Multidrug-Resistant Klebsiella pneumoniae Isolates

Andrea Endimiani; Kristine M. Hujer; Andrea M. Hujer; Eliana S. Armstrong; Yuvraj Choudhary; James B. Aggen; Robert A. Bonomo

ABSTRACT The in vitro activity of ACHN-490, a novel aminoglycoside (“neoglycoside”), was evaluated against 102 multidrug-resistant (MDR) Klebsiella pneumoniae strains, including a subset of 25 strains producing the KPC carbapenemase. MIC50 values for gentamicin, tobramycin, and amikacin were 8 μg/ml, 32 μg/ml, and 2 μg/ml, respectively; MIC90 values for the same antimicrobials were ≥64 μg/ml, ≥64 μg/ml, and 32 μg/ml, respectively. ACHN-490 showed an MIC50 of 0.5 μg/ml and an MIC90 of 1 μg/ml, which are significantly lower than those of comparator aminoglycosides. ACHN-490 represents a promising aminoglycoside for the treatment of MDR K. pneumoniae isolates, including those producing KPC β-lactamase.


Antimicrobial Agents and Chemotherapy | 2008

Presence of Plasmid-Mediated Quinolone Resistance in Klebsiella pneumoniae Isolates Possessing blaKPC in the United States

Andrea Endimiani; Lenore L. Carias; Andrea M. Hujer; Christopher R. Bethel; Kristine M. Hujer; Federico Perez; Rebecca A. Hutton; William R. Fox; Geraldine S. Hall; Michael R. Jacobs; David L. Paterson; Louis B. Rice; Stephen G. Jenkins; Fred C. Tenover; Robert A. Bonomo

ABSTRACT The presence of plasmid-mediated quinolone resistance genes [i.e., qnrA, qnrB, qnrS, aac(6′)-Ib-cr, and qepA] was evaluated among 42 blaKPC-containing Klebsiella pneumoniae isolates collected in the eastern United States. One isolate carried the blaKPC-3 and qnrB19 genes on the same conjugative plasmid, whereas another carried the blaKPC-3 and qnrA1 genes on separate plasmids.


Clinical Microbiology Reviews | 2016

Intestinal Carriage of Carbapenemase-Producing Organisms: Current Status of Surveillance Methods

Roberto Viau; Karen M. Frank; Michael R. Jacobs; Brigid Wilson; Keith S. Kaye; Curtis J. Donskey; Federico Perez; Andrea Endimiani; Robert A. Bonomo

SUMMARY Carbapenemases have become a significant mechanism for broad-spectrum β-lactam resistance in Enterobacteriaceae and other Gram-negative bacteria such as Pseudomonas and Acinetobacter spp. Intestinal carriage of carbapenemase-producing organisms (CPOs) is an important source of transmission. Isolation of carriers is one strategy that can be used to limit the spread of these bacteria. In this review, we critically examine the clinical performance, advantages, and disadvantages of methods available for the detection of intestinal carriage of CPOs. Culture-based methods (Centers for Disease Control and Prevention [CDC] protocols, chromogenic media, specialized agars, and double-disk synergy tests) for detecting carriage of CPOs are convenient due to their ready availability and low cost, but their limited sensitivity and long turnaround time may not always be optimal for infection control practices. Contemporary nucleic acid amplification techniques (NAATs) such as real-time PCR, hybridization assays, loop-mediated isothermal amplification (LAMP), or a combined culture and NAAT approach may provide fast results and/or added sensitivity and specificity compared with culture-based methods. Infection control practitioners and clinical microbiologists should be aware of the strengths and limitations of available methods to determine the most suitable approach for their medical facility to fit their infection control needs.

Collaboration


Dive into the Andrea Endimiani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert A. Bonomo

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Francesco Luzzaro

Ospedale di Circolo e Fondazione Macchi

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge