Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Fernández-Araujo is active.

Publication


Featured researches published by Andrea Fernández-Araujo.


Journal of Cellular Biochemistry | 2012

Role of yessotoxin in calcium and cAMP-crosstalks in primary and K-562 human lymphocytes: The effect is mediated by Anchor kinase a mitochondrial proteins

Araceli Tobío; Andrea Fernández-Araujo; Amparo Alfonso; Luis M. Botana

Yessotoxin (YTX) is a marine polyether toxin previously described as a phosphodiesterase (PDE) activator in fresh human lymphocytes. This toxin induces a decrease of adenosine 3′,5′‐cyclic monophosphate (cAMP) levels in fresh human lymphocytes in a medium with calcium (Ca2+), whereas the contrary effect has been observed in a Ca2+‐free medium. In the present article, the effect of YTX in K‐562 lymphocytes cell line has been analysed. Surprisingly, results obtained in K‐562 cell line are completely opposite than in fresh human lymphocytes, since in K‐562 cells YTX induces an increase of cAMP levels. YTX cytotoxicity was also studied in both K‐562 cell line and fresh human lymphocytes. Results demonstrate that YTX does not modify fresh human lymphocytes viability, whereas in K‐562 cells, YTX has a highly cytotoxic effect. It has been described in a previous study that YTX induces a small cytosolic Ca2+ increase in fresh human lymphocytes but no effect was observed on Ca2+ pools depletion in these cells. However, our results show that, in K‐562 cells, YTX has no effect on cytosolic Ca2+ levels in a medium with Ca2+ and induces an increase on Ca2+ pools depletion followed by a Ca2+ influx. As far as Ca2+ modulation is concerned these results demonstrate that YTX has a clear opposite effect in tumoural and fresh human lymphocytes. In addition, intracellular Ca2+ reservoirs affected by YTX are different than thapsigargin‐sensible pools. Furthermore, YTX‐dependent Ca2+ pools depletion was abolished by cAMP analogue (dibutyryl cAMP), phosphodiesterase‐4 (PDE4) inhibitor (rolipram), protein kinase A inhibitor (H89) and oxidative phosphorylation uncoupler carbonyl cyanide p‐(trifluoromethoxy) (FCCP) treatments. This evidences the crosstalks between Ca2+, YTX and cAMP pathways. Also, results obtain demonstrate that YTX‐dependent Ca2+ influx was only abolished by FCCP pre‐treatment, which indicates a link between YTX and mitochondria in K‐562 cell line. Cytosolic expression of A‐kinase anchor proteins (AKAPs), the proteins which integrates phosphodiesterases (PDEs) and PKA to the mitochondria, was determined in both cell models. On the one hand, in human fresh lymphocytes, YTX increases AKAP149 cytosolic expression. This fact is accompanied with a decrease in cAMP levels, and therefore PDEs activation, which finally leads to cell survival. On the other hand, in tumoural lymphocytes, YTX has an opposite effect since decreases AKAP149 cytosolic expression and increase cAMP levels which leads to cell death. This is the first time that YTX and mitochondrial AKAPs proteins relationship is characterised. J. Cell. Biochem. 113: 3752–3761, 2012.


Analytical Biochemistry | 2012

Palytoxin detection and quantification using the fluorescence polarization technique.

Amparo Alfonso; Andrea Fernández-Araujo; Carmen Alfonso; B. Caramés; Araceli Tobío; M. C. Louzao; M.R. Vieytes; Luis M. Botana

Palytoxin (PLT) is a highly toxic nonpeptidic marine natural product, with a complex chemical structure. Its mechanism of action targets Na,K-ATPase. Fluorescence polarization (FP) is a spectroscopic technique that can be used to determine molecular interactions. It is based on exciting a fluorescent molecule with plane-polarized light and measuring the polarization degree of the emitted light. In this study, FP was used to develop a detection method based on the interaction between the Na,K-ATPase and the PLT. The Na,K-ATPase was labeled with a reactive succinimidyl esther of carboxyfluorescein, and the FP of protein-dye conjugate was measured when the amount of PLT in the medium was modified. The assay protocol was first developed using ouabain as a binding molecule. The final result was a straight line that correlates FP units and PLT concentration. Within this line the PLT equivalents in a natural sample can be quantified. A selective cleaning procedure to mussel samples and dinoflagellates cultures was also developed to avoid the matrix effect. The LOQ (limit of quantification) of the method is 10nM and the LOD (limit of detection) is 2 nM. This new PLT detection method is easier, faster, and more reliable than the other methods described to date.


Toxicology | 2015

Key role of phosphodiesterase 4A (PDE4A) in autophagy triggered by yessotoxin.

Andrea Fernández-Araujo; Amparo Alfonso; M.R. Vieytes; Luis M. Botana

Understanding the mechanism of action of the yessotoxin (YTX) is crucial since this drug has potential pharmacological effects in allergic processes, tumor proliferation and neurodegenerative diseases. It has been described that YTX activates apoptosis after 24h of treatment, while after 48 h of incubation with the toxin a decrease in cell viability corresponding to cellular differentiation or non-apoptotic cell death was observed. In this paper, these processes were extensively studied by using the erythroleukemia K-562 cell line. On one hand, events of K-562 cell differentiation into erythrocytes after YTX treatment were studied using hemin as positive control of cell differentiation. Cell differentiation was studied through the cyclic nucleotide response element binding (phospho-CREB) and the transferrin receptor (TfR) expression. On the other hand, using rapamycin as positive control, autophagic hallmarks, as non-apoptotic cell death, were studied after toxin exposure. In this case, the mechanistic target of rapamycin (mTOR) and light chain 3B (LC3B) levels were measured to check autophagy activation. The results showed that cell differentiation was not occurring after 48 h of toxin incubation while at this time the autophagy was triggered. Furthermore after 24h of toxin treatment none of these processes were activated. In addition, the role of the type 4A phosphodiesterase (PDE4A), the intracellular target of YTX, was checked. PDE4A-silencing experiments showed different regulation steps of PDE4A in the autophagic processes triggered either by traditional compounds or YTX. In summary, after 48 h YTX treatment PDE4A-dependent autophagy, as non-apoptotic programmed cell death, is activated.


Toxins | 2013

Surface Plasmon Resonance Biosensor Method for Palytoxin Detection Based on Na + ,K + -ATPase Affinity

Amparo Alfonso; María-José Pazos; Andrea Fernández-Araujo; Araceli Tobío; Carmen Alfonso; Mercedes R. Vieytes; Luis M. Botana

Palytoxin (PLTX), produced by dinoflagellates from the genus Ostreopsis was first discovered, isolated, and purified from zoanthids belonging to the genus Palythoa. The detection of this toxin in contaminated shellfish is essential for human health preservation. A broad range of studies indicate that mammalian Na+,K+-ATPase is a high affinity cellular receptor for PLTX. The toxin converts the pump into an open channel that stimulates sodium influx and potassium efflux. In this work we develop a detection method for PLTX based on its binding to the Na+,K+-ATPase. The method was developed by using the phenomenon of surface plasmon resonance (SPR) to monitor biomolecular reactions. This technique does not require any labeling of components. The interaction of PLTX over immobilized Na+,K+-ATPase is quantified by injecting different concentrations of toxin in the biosensor and checking the binding rate constant (kobs). From the representation of kobs versus PLTX concentration, the kinetic equilibrium dissociation constant (KD) for the PLTX-Na+,K+-ATPase association can be calculated. The value of this constant is KD = 6.38 × 10−7 ± 6.67 × 10−8 M PLTX. In this way the PLTX-Na+,K+-ATPase association was used as a suitable method for determination of the toxin concentration in a sample. This method represents a new and useful approach to easily detect the presence of PLTX-like compounds in marine products using the mechanism of action of these toxins and in this way reduce the use of other more expensive and animal based methods.


Oceanography | 2013

Warm Seawater Microalgae: Growth and Toxic Profile of Ostreopsis Spp. from European Coasts

Andrea Fernández-Araujo; Amparo Alfonso; Jose M. Antelo; Tania Davila; Carmen Alfonso; Panagiota Katikou; Luis M. Botana

Palytoxin (PLTX) is a complex marine toxin synthesized by the soft coral Palythoa toxica and by species of the benthic dinoflagellate Ostreopsis spp. The toxin binds to the active Na,K-ATPase pump in the cellular membrane. This interaction changes the protein conformation and produces a non-specific cation channel. Using the Fluorescent Polarization (FP) technique to quantify the PLTX concentration, the production of PLTX-like products was measured in several cultures of Ostreopsis ovata and Ostreopsis siamensis. The cultures were grown under different conditions to study the optimal parameters to grow and to produce toxins. Serious difficulties were found to quantify the number of cells at the end of the exponential phase. In order to avoid any toxin loss, the weight of the pellet obtained after careful filtration was used as reliable parameter to calculate the growth of the cultures. Also, this parameter was used to refer the results of toxin concentration. In addition the toxicity of the cultures was measured by mouse bioassay. In these conditions, the optimal parameters to grow these strains are 24°C, 37% of salinity and 16:8 h light-dark photoperiod. Within these parameters high amounts of PLTX-like compounds with different toxin profiles were obtained.


Anti-inflammatory & anti-allergy agents in medicinal chemistry | 2013

Protein Kinase C Modulates Aurora-kinase Inhibition Induced by CCT129202 in HMC-1560,816 Cell Line

Araceli Tobío; Amparo Alfonso; Andrea Fernández-Araujo; Eva Alonso; Luis M. Botana

The human mast cell line HMC-1⁵⁶⁰,⁸¹⁶ carries activating mutations in the proto-oncogene of c-kit that cause autophosphorylation and permanent c-kit receptor activation. The compound CCT129202 is a new and selective inhibitor of Aurora kinase A and B that decreases the viability of a variety of human tumor cell lines. The effect of Aurora kinase inhibition was assessed in the HMC-1⁵⁶⁰,⁸¹⁶ line in order to find a suitable tool for mastocytosis treatment. CCT129202 treatment induces a significant decrease in cell viability in HMC-1⁵⁶⁰,⁸¹⁶ cells after 48 hours of treatment. Moreover, caspase-3 and caspase-8 activation was induced after incubation of HMC-1⁵⁶⁰,⁸¹⁶ cells in the presence of CCT129202. It has been demonstrated that Protein Kinase C (PKC) plays a crucial role in mast cell activation as well as cell migration, adhesion and apoptotic cell death. Co-treatment of Ca²⁺-independent PKCs (δ e and θ) inhibitor GF109203X with CCT129202, reduces caspase-3 activation which controls cell levels. In contrast, Go6976, an inhibitor of Ca²⁺-dependent PKCs, increases caspase-3 activation. Oppositely, GF109203X does not modify CCT129202-induced apoptosis through the caspase-8 pathway whereas Go6976 treatment abolishes the increase on caspase-8 activity due to CCT129202. This implies that Ca²⁺-independent PKC isoforms seems to be related with CCT129202-induced apoptosis through the caspase- 3 pathway, whereas Ca²⁺-dependent PKC isoforms are related with the CCT129202 effect on the caspase-8 pathway. Interestingly, CCT129202 cytotoxic effect remains even though Ca²⁺-dependent PKCs are inhibited, which shows that the Aurora kinase inhibitor effect is acting through the caspase-3 pathway. On the other hand, Ca²⁺-independent PKCs inhibition does not affect the final apoptotic CCT129202 effect because this seems to be mediated by the caspase-8 pathway. Moreover, CCT129202 does not affect PKCδ and Ca²⁺-dependent PKC translocation, which indicates that PKC translocation pivots on its activation. This demonstrates that Aurora kinase inhibition is not related to this process. Finally, when PKC is silenced in HMC-1⁵⁶⁰,⁸¹⁶ cells, the effect of CCT129202 on the caspase-3 pathway disappears, which indicates that the CCT129202 effect is clearly PKC-dependent.


Toxicology in Vitro | 2015

Yessotoxin activates cell death pathways independent of Protein Kinase C in K-562 human leukemic cell line

Andrea Fernández-Araujo; Amparo Alfonso; Mercedes R. Vieytes; Luis M. Botana

Protein Kinase C (PKC) is a group of enzymes involved in pro-survival or pro-apoptotic events depending on the cellular model. Moreover, Yessotoxin (YTX) modulates its expression and activates different cell death pathways. In K-562 tumor cell line, YTX induces apoptosis and autophagy after 24 and 48 h of incubation, respectively, and the toxin carries out its action through the phosphodiesterase 4A (PDE4A). Therefore, the levels of two subtypes of PKC, conventional (cPKC) and δ isotype of novel PKC (PKCδ) were studied at these times after YTX incubation. Also their involvement in the cell death activated by the toxin and their relationship with PDE4A was checked. The expression of cPKC and PKCδ in cytosol, plasma membrane and nucleus was studied in normal and PDE4A-silenced cells. Furthermore, cell viability of normal cells, as well as cPKC-, PKCδ- and PDE4A-silenced cells was tested by Lactate Dehydrogenase (LDH) assay. As a result, PKCδ showed a key role in K-562 cell survive, since without this protein, K-562 cell decreased their viability. Furthermore, modulation of PKCs by YTX treatment was observed, however, the changes in the expression of these proteins are independent of cell death activated by the toxin. In addition, the modulation of PKCs detected is PDE4A-dependent, since the silencing of this protein change PKC expression pattern.


The International Journal of Biochemistry & Cell Biology | 2014

Role of AKAP 149-PKA-PDE4A complex in cell survival and cell differentiation processes.

Andrea Fernández-Araujo; Araceli Tobío; Amparo Alfonso; Luis M. Botana


Archive | 2013

Warm Seawater Microalgae: Growth and Toxic Profile of Ostreopsis Spp.

Andrea Fernández-Araujo; Amparo Alfonso; Jose M. Antelo; Tania Davila; Carmen Alfonso; Panagiota Katikou; Luis M. Botana


Frontiers in Pharmacology | 2015

Different toxic effects of YTX in tumor K-562 and lymphoblastoid cell lines

Andrea Fernández-Araujo; Jon Andoni Sánchez; Amparo Alfonso; M.R. Vieytes; Luis M. Botana

Collaboration


Dive into the Andrea Fernández-Araujo's collaboration.

Top Co-Authors

Avatar

Amparo Alfonso

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Luis M. Botana

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Araceli Tobío

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Carmen Alfonso

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mercedes R. Vieytes

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Panagiota Katikou

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Eva Alonso

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Jon Andoni Sánchez

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

M. C. Louzao

University of Santiago de Compostela

View shared research outputs
Researchain Logo
Decentralizing Knowledge