Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Festa is active.

Publication


Featured researches published by Andrea Festa.


International Geology Review | 2010

Mélanges and mélange-forming processes: a historical overview and new concepts

Andrea Festa; Gian Andrea Pini; Yildirim Dilek; Giulia Codegone

Mélanges represent a significant component of collisional and accretionary orogenic belts and occur widely around the world. Since its first introduction and use, the term has evolved to cover both processes (tectonic, sedimentary, and diapiric) and tectonic settings of mélange formation. The meaning and significance of various terms referring to the origin of ‘block-in-matrix chaotic rocks’ are still subject to debate. This study presents a historical overview of the evolving mélange concept and investigates the relationships between mélange types and their tectonic settings of formation. We investigate the contribution of mass-transport versus contractional deformation processes at the onset of mélange formation and throughout the evolution of different mélange types, and the nature of the continuum and transition from broken formations to true tectonic mélanges. A mélange is a mappable chaotic body of mixed rocks with a block-in-matrix fabric whose internal structure and evolution are intimately linked to the structural, sedimentary, magmatic, and metamorphic processes attending its origin. On the basis of a comparative analysis of exhumed, ancient on-land mélanges and modern tectonic environments, where mélange-forming processes are at work, such units are classified into those related to extensional tectonics, passive margin evolution, strike-slip tectonics, subduction zones, collisional tectonics, and intracontinental deformation. Sedimentation and contractional deformation contribute significantly to mélange formation in all these tectonic environments, although the internal structure of deposits is strongly controlled and overprinted by processes that prevail during the last stages of mélange formation in a single tectonic setting. Tectonic mélanges are commonly subordinate to broken formations and are restricted to narrow, elongated-to-coalescent fault zones, large-scale fault zones, and plate boundaries.


Geological Society of America Bulletin | 2007

Interaction of tectonic, sedimentary, and diapiric processes in the origin of chaotic sediments: An example from the Messinian of Torino Hill (Tertiary Piedmont Basin, northwestern Italy)

Francesco Dela Pierre; Andrea Festa; A. Irace

Geologic mapping and integrated stratigraphic and structural observations of a gypsum quarry from northwestern Italy allow evaluation of the relative contributions, the time relationships, and the causative links between tectonic, sedimentary, and diapiric processes in the genesis of chaotic sediments of Messinian age. Three chaotic units are exposed in the quarry: together, they make up a composite chaotic unit that is unconformably overlain by post-chaotic sediments. Unit 1 is composed of blocks of primary evaporites that are juxtaposed to marine marls by subvertical transpressive faults and are parallel to the fault surfaces. Unit 2 unconformably overlies Unit 1, and consists of a lenticular sedimentary body containing both angular and rounded blocks, randomly distributed in a fine-grained matrix. Unit 3 consists of a 10-m-wide body bounded by transpressive faults, and pierces both Units 1 and 2. It is composed of strongly deformed muddy deposits that envelop blocks of gypsum and carbonate rocks. Between the core and the margins, various zones have been defined based on the increasing amount of deformation toward the margins. The post-chaotic sediments unconformably overlie both Units 1 and 2, sealing the main fault systems. The composite chaotic unit is related to thrust propagation during a regional phase of deformation, and is the result of different evolutionary stages, in each of which a single genetic mechanism prevailed. Tectonic faulting prevailed during stage 1 and was responsible for the formation of a tectonically disrupted assemblage (Unit 1). During stage 2, gravity-driven sedimentary phenomena, related to slope oversteepening triggered by ongoing thrust propagation, resulted in the deposition of Unit 2. Gravity sliding was favored by the mechanical weakening of sediments caused by tectonic faulting. Over-pressure conditions resulting from the rapid deposition of Unit 2 triggered the rise of a diapir (Unit 3) that pierced Units 1 and 2. The involvement of methane-rich fluids in the formation of the diapir is suggested by the occurrence of blocks of methane-derived carbonates, found not in the quarry, but just outside it.


International Geology Review | 2010

Peri-Adriatic melanges and their evolution in the Tethyan realm

Andrea Festa; Gian Andrea Pini; Yildirim Dilek; Giulia Codegone; Livio Vezzani; Francesca Ghisetti; Claudio Corrado Lucente; Kei Ogata

In the peri-Adriatic region, mélanges represent a significant component of the Apennine and Dinaride–Albanide–Hellenide orogenic belts as well as ancient and present-day accretionary wedges. Different mélange types in this broad region provide an excellent case study to investigate the mode and nature of main processes (tectonic, sedimentary, and diapiric) involved in mélange formation in contrasting geodynamic settings. We present a preliminary subdivision and classification of the peri-Adriatic mélanges based on several years of field studies on chaotic rock bodies, including detailed structural and stratigraphic analyses. Six main categories of mélanges are distinguished on the basis of the processes and geodynamic settings of their formation. These mélange types are spatially and temporally associated with extensional tectonics, passive margin evolution, strike-slip tectonics, oceanic crust subduction, continental collision, and deformation. There appears to have been a strong interplay and some overlap between tectonic, sedimentary, and diapiric processes during mélange formation; however, in highly deformed regions, it is still possible to distinguish those mélanges that formed in different geodynamic environments and their main processes of formation. This study shows that a strong relationship exists between mélange-forming processes and the palaeogeographic settings and conditions of mélange formation. Given the differences in age, geographic location, and evolutionary patterns, we document the relative importance of mélanges and broken formations in the tectonic evolution of the peri-Adriatic mountain belts.


Geological Society of America Bulletin | 2013

Structural anatomy of the Ligurian accretionary wedge (Monferrato, NW Italy), and evolution of superposed mélanges

Andrea Festa; Yildirim Dilek; Giulia Codegone; Simona Cavagna; Gian Andrea Pini

We document in this study the internal structure of the Late Cretaceous–late Oligocene Ligurian accretionary wedge in northwestern Italy, and the occurrence in this exhumed wedge of broken formation and three different types of melanges that formed sequentially through time. The broken formation is the oldest unit in the accretionary wedge and shows bedding-parallel boudinage structures, which developed as a result of layer-parallel extension at the toe of the internal part of the Alpine wedge front during the Late Cretaceous–middle Eocene. This broken formation experienced an overprint of tectonic, diapiric, and sedimentary processes as a result of continental collision in the late Oligocene. The NE-vergent thrusting and associated shortening produced a structurally ordered block-in-matrix fabric through mixing of both native and exotic blocks, forming the tectonic melange. The concentration of overpressurized fluids along the thrust fault planes triggered the upward rise of shaly material, producing the diapiric melange, which in turn provided the source material for the downslope emplacement of the youngest, late Oligocene sedimentary melange. The sedimentary melange units unconformably cover the collisional thrust faults, constraining the timing of both this episode of contractional deformation related to continental collision and the combination and overlap of tectonic, diapiric, and sedimentary processes. Our multiscale structural analysis of the Ligurian accretionary wedge shows that tectonic, diapiric, and sedimentary processes played a significant role in its evolution, and that the interplay between and the superposition of these different processes strongly controlled the dynamic equilibrium of the accretionary wedge in the NW Apennines–western Alps. This kind of polygenetic melange development may be common in many modern and ancient accretionary complexes, and the processes involved in their formation are likely to be responsible for major tsunamic events in convergent margins.


International Geology Review | 2015

Late Oligocene–early Miocene olistostromes (sedimentary mélanges) as tectono-stratigraphic constraints to the geodynamic evolution of the exhumed Ligurian accretionary complex (Northern Apennines, NW Italy)

Andrea Festa; Kei Ogata; Gian Andrea Pini; Yildirim Dilek; Giulia Codegone

In the Northern Apennines of Italy, mud-rich olistostromes (sedimentary mélanges) occur at different stratigraphic levels within the late Oligocene–early Miocene sedimentary record of episutural/wedge-top basins. They are widely distributed along the exhumed outer part of the Ligurian accretionary complex, atop the outer Apenninic prowedge, over an area about 300 km long and 10–15 km wide. Olistostromes represent excellent examples of ancient submarine mass-transport complexes (MTCs), consisting of stacked cohesive debris flows that can be directly compared to some of those observed in modern accretionary wedges. We describe the internal arrangement of olistostrome occurrences in the sector between Voghera and the Monferrato area, analysing their relationships with mesoscale liquefaction features, which are commonly difficult to observe in modern MTCs. Slope failures occurred in isolated sectors along the wedge front, where out-of-sequence thrusting, seismicity, and different pulses of overpressured tectonically induced fluid flows acted concomitantly. Referring to the Northern Apennines regional geology, we also point out a gradual lateral rejuvenation (from late Oligocene to early Miocene) toward the SE and an increasing size and thickness of the olistostromes along the strike of the frontal Apenninic prowedge. This suggests that morphological reshaping of the outer prowedge via mass-transport processes balanced, with different pulses over a short time span, the southeastward migration and segmentation of accretionary processes. The latter were probably favoured by the occurrence in the northwestern part of the Northern Apennines of major, inherited palaeogeographic features controlling the northward propagation of the prowedge. Detailed knowledge of olistostromes, as ancient examples of MTCs related to syn-sedimentary tectonics and shale diapirism, and of their lateral variations in term of age and size, provides useful information in regard to better understanding of both the tectono-stratigraphic evolution of the Apenninic prowedge and the submarine slope failures in modern accretionary wedges.


Submarine Mass Movements and Their Consequences - 5th International Symposium | 2012

Sedimentary mélanges and fossil mass-transport complexes: a key for better understanding submarine mass movements?

Gian Andrea Pini; Kei Ogata; Angelo Camerlenghi; Andrea Festa; Claudio Corrado Lucente; Giulia Codegone

Melanges originated from sedimentary processes (sedimentary melanges) and olistostromes are frequently present in mountain chains worldwide. They are excellent fossil examples of mass-transport complexes (MTC), often cropping out in well-preserved and laterally continuous exposures. In this article we will show the results of the integrated study of fossil MTCs, including sedimentary melanges/olistostromes, with a focus on the Apennines of Italy. Fossil MTCs, especially the basin-wide ones, are composite and multi-event units involving the entire spectra of mass-transport processes. The down-slope motion of these bodies is enabled by the relative movement of discrete masses, with progressive stratal disruption of rocks/sediment involved and flow transformation. Three kinds of MTC are here distinguished, in which the movements are enabled by (1) shear-dominated viscous flows within a muddy matrix, (2) mud-silt-sandy matrix sustained by fluid overpressure, (3) concentrated shear zones/surfaces with advection of grains and fluid (overpressured basal carpets). These MTC types may represent end-members of a continuum of products and correspond to different kinematics of transport and emplacement and to different relationship with the substratum. These observations should result in a better knowledge of mass-transport processes and bodies, in relation with the basin floor geometries.


International Geology Review | 2015

Tectonic significance of different block-in-matrix structures in exhumed convergent plate margins: examples from oceanic and continental HP rocks in Inner Western Alps (northwest Italy)

Gianni Balestro; Andrea Festa

In the Inner Western Alps, three different types of block-in-matrix structures (BIMs) formed sequentially through time at a convergent plate margin. These show the superposition of progressive deformation from (i) subduction to eclogite-facies depths, (ii) collision, accretion, and exhumation of oceanic crust, represented by the Monviso Meta-ophiolite Complex, to (iii) collision, accretion, and exhumation of the continental Dora Maira units. The Type 1 occurs in the metasedimentary cover of the Dora Maira Unit and consists of a map-scale broken formation with boudinaged ‘native’ blocks of marble (Early Jurassic) in a calcschist matrix. It results from the tectonic overprinting of exhumation-related folding (D2-stage) on an earlier subduction-related dismembered succession (D1-stage). Type 1 also includes ‘non-mappable’ BIMs with ‘exotic’ blocks, resulting from the gravitational collapse of the Triassic carbonate platform of European Continental Margin, triggered by the Early Jurassic rifting. In the Monviso Meta-ophiolite Complex, Types 2 and 3 represent tectonically induced broken and dismembered formations, respectively. They differ from each other in the degree of stratal disruption of primary interbedded horizons of mafic metabreccia (Type 3) and mafic metasandstone (Types 2 and 3) sourced by the Late Jurassic–Early Cretaceous denudation of an oceanic core complex. Dismembered interbeds (Type 2) and isolated blocks were mixed together (Type 3) by the overlap of D2 tectonics and late- to post-exhumation extensional shearing (D3-stage). Development of these types of BIMs may be common in many exhumed convergent plate margins, where severe tectonics and metamorphic recrystallization under high-pressure conditions normally prevent the reconstruction of BIMs or mélange-forming processes. Our findings show that documenting the mode and time of the processes forming BIMs is highly relevant in order to reconstruct the oceanic seafloor morphology and composition of associated stratigraphic successions, and their control in the evolution of those convergent plate margins.


Lithosphere | 2015

A Jurassic oceanic core complex in the high-pressure Monviso ophiolite (western Alps, NW Italy)

Andrea Festa; Gianni Balestro; Yildirim Dilek

The eclogite-facies Monviso ophiolite in the western Alps displays a complex record of Jurassic rift-drift, subduction zone, and Cenozoic collision tectonics in its evolutionary history. Serpentinized lherzolites intruded by 163 ± 2 Ma gabbros are exposed in the footwall of a thick shear zone (Baracun shear zone) and are overlain by basaltic lava flows and synextensional sedimentary rocks in the hanging wall. Mylonitic serpentinites with sheared ophicarbonate veins and talc-and-chlorite schist rocks within the Baracun shear zone represent a rock assemblage that formed from seawater-derived hydrothermal fluids percolating through it during intra-oceanic extensional exhumation. A Lower Cretaceous calc-schist, marble, and quartz-schist metasedimentary assemblage unconformably overlies the footwall and hanging-wall units, representing a postextensional sequence. The Monviso ophiolite, Baracun shear zone, and the associated structures and mineral phases represent core complex formation in an embryonic ocean (i.e., the Ligurian-Piedmont Ocean). The heterogeneous lithostratigraphy and the structural architecture of the Monviso ophiolite documented here are the products of rift-drift processes that were subsequently overprinted by subduction zone tectonics, and they may also be recognized in other (ultra)high-pressure belts worldwide.


Geological Society of America Bulletin | 2015

Evidence for late Alpine tectonics in the Lake Garda area (northern Italy) and seismogenic implications

Giancarlo Scardia; Andrea Festa; Giovanni Monegato; Roberta Pini; Sergio Rogledi; Fabrizio Tremolada; Fabrizio Galadini

We investigated the recent evolution of the Po Plain–Alps system by integrating subsurface geophysical data from the Po Plain with new stratigraphic and structural observations from the Southern Alps margin. Inversion of structural data and chronology provided by stratigraphic constraints led to the definition of three tectonic events since the Pliocene, namely, the intra-Zanclean, the Gelasian, and the middle Pleistocene, driven by an axis of maximum compression formerly oriented NE (intra-Zanclean) and then to the NNW (Gelasian and middle Pleistocene). The associated deformation has been accommodated by two sets of faults consisting of NNE-trending thrust faults, mostly represented in the western sector of Lake Garda, and NW-trending strike-slip faults, observed in the southern and eastern sectors. The interplay between these two sets of faults is interpreted to produce short ( w w > 6.5) along the NW-trending strike-slip faults. In this framework, the newly defined Nogara fault and the Sant’Ambrogio fault, all pertaining to the NW-trending system, are regarded as potential candidates for the seismogenic source of the January A.D. 1117 event, the most destructive earthquake in the Po Plain.


Journal of Maps | 2013

Geological map of the External Ligurian Units in western Monferrato (Tertiary Piedmont Basin, NW Italy)

Andrea Festa; Giulia Codegone

The External Ligurian Units in western Monferrato (NW-Italy) have been always described as an undifferentiated chaotic complex. This map, at 1:10,000 scale, describes in detail the tectono-stratigraphic setting of these Units in the sector of the Alps–Apennines junction. Here, the External Ligurian Units represent the northwestern prolongation of the Northern Apennines and consist of a Late Cretaceous chaotic succession represented by the Argille varicolori and the overlaying Monte Cassio Flysch. The late Eocene–Miocene episutural succession of the Tertiary Piedmont Basin rests unconformably on the External Ligurian Units. The mapped crosscutting relationships between stratigraphic unconformities and faults allow us to describe a complex tectono-stratigraphic setting that is the product of four tectonic stages. Layer-parallel extension related to Late Cretaceous–early Eocene deformation occurred in the internal sector of the Alpine accretionary wedge and is preserved within the External Ligurian Units which is sealed by the late Eocene deposits of the Tertiary Piedmont Basin. The unconformity at the base of the Oligocene succession records the drowning of shelf sediments controlled by NW-striking left-lateral transtensive faulting. A WNW-striking and NE-verging thrust superposes the External Ligurian Units onto the late Eocene–Oligocene deposits and it is sealed by the gravitational emplacement of late Oligocene Polygenetic argillaceous breccias. Both the WNW-striking thrust and the Polygenetic argillaceous breccias are cut by NW-striking right-lateral transpressive faults that are, in turn, sealed by the Tortonian unconformity.

Collaboration


Dive into the Andrea Festa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kei Ogata

University Centre in Svalbard

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge