Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Fleig is active.

Publication


Featured researches published by Andrea Fleig.


Science | 2006

CRACM1 Is a Plasma Membrane Protein Essential for Store-Operated Ca2+ Entry

Monika Vig; Christine Peinelt; Alfred Beck; Dana Lynn T Koomoa; Dania Rabah; Murielle Koblan-Huberson; Stefan Kraft; Hubert Turner; Andrea Fleig; Reinhold Penner; J-P Kinet

Store-operated Ca2+ entry is mediated by Ca2+ release–activated Ca2+ (CRAC) channels following Ca2+ release from intracellular stores. We performed a genome-wide RNA interference (RNAi) screen in Drosophila cells to identify proteins that inhibit store-operated Ca2+ influx. A secondary patch-clamp screen identified CRACM1 and CRACM2 (CRAC modulators 1 and 2) as modulators of Drosophila CRAC currents. We characterized the human ortholog of CRACM1, a plasma membrane–resident protein encoded by gene FLJ14466. Although overexpression of CRACM1 did not affect CRAC currents, RNAi-mediated knockdown disrupted its activation. CRACM1 could be the CRAC channel itself, a subunit of it, or a component of the CRAC signaling machinery.


Nature | 2001

LTRPC7 is a Mg·ATP-regulated divalent cation channel required for cell viability

Monica J. S. Nadler; Meredith C. Hermosura; Kazunori Inabe; Anne-Laure Perraud; Qiqin Zhu; Alexander J. Stokes; Tomohiro Kurosaki; Jean-Pierre Kinet; Reinhold Penner; Andrew M. Scharenberg; Andrea Fleig

The molecular mechanisms that regulate basal or background entry of divalent cations into mammalian cells are poorly understood. Here we describe the cloning and functional characterization of a Ca2+- and Mg2+-permeable divalent cation channel, LTRPC7 (nomenclature compatible with that proposed in ref. 1), a new member of the LTRPC family of putative ion channels. Targeted deletion of LTRPC7 in DT-40 B cells was lethal, indicating that LTRPC7 has a fundamental and nonredundant role in cellular physiology. Electrophysiological analysis of HEK-293 cells overexpressing recombinant LTRPC7 showed large currents regulated by millimolar levels of intracellular Mg·ATP and Mg·GTP with the permeation properties of a voltage-independent divalent cation influx pathway. Analysis of several cultured cell types demonstrated small magnesium-nucleotide-regulated metal ion currents (MagNuM) with regulation and permeation properties essentially identical to the large currents observed in cells expressing recombinant LTRPC7. Our data indicate that LTRPC7, by virtue of its sensitivity to physiological Mg·ATP levels, may be involved in a fundamental process that adjusts plasma membrane divalent cation fluxes according to the metabolic state of the cell.


Nature | 2001

ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology

Anne-Laure Perraud; Andrea Fleig; Christopher A. Dunn; Leigh Ann Bagley; Pierre Launay; Carsten Schmitz; Alexander J. Stokes; Qiqin Zhu; Maurice J. Bessman; Reinhold Penner; Jean-Pierre Kinet; Andrew M. Scharenberg

Free ADP-ribose (ADPR), a product of NAD hydrolysis and a breakdown product of the calcium-release second messenger cyclic ADPR (cADPR), has no defined role as an intracellular signalling molecule in vertebrate systems. Here we show that a 350-amino-acid protein (designated NUDT9) and a homologous domain (NUDT9 homology domain) near the carboxy terminus of the LTRPC2/TrpC7 putative cation channel both function as specific ADPR pyrophosphatases. Whole-cell and single-channel analysis of HEK-293 cells expressing LTRPC2 show that LTRPC2 functions as a calcium-permeable cation channel that is specifically gated by free ADPR. The expression of native LTRPC2 transcripts is detectable in many tissues including the U937 monocyte cell line, in which ADPR induces large cation currents (designated IADPR) that closely match those mediated by recombinant LTRPC2. These results indicate that intracellular ADPR regulates calcium entry into cells that express LTRPC2.


Cell | 2003

Regulation of Vertebrate Cellular Mg2+ Homeostasis by TRPM7

Carsten Schmitz; Anne-Laure Perraud; Catherine O. Johnson; Kazunori Inabe; Megan Smith; Reinhold Penner; Tomohiro Kurosaki; Andrea Fleig; Andrew M. Scharenberg

TRPM7 is a polypeptide with intrinsic ion channel and protein kinase domains whose targeted deletion causes cells to experience growth arrest within 24 hr and eventually die. Here, we show that while TRPM7s kinase domain is not essential for activation of its channel, a functional coupling exists such that structural alterations of the kinase domain alter the sensitivity of channel activation to Mg(2+). Investigation of the relationship between Mg(2+) and the cell biological role of TRPM7 revealed that TRPM7-deficient cells become Mg(2+) deficient, that both the viability and proliferation of TRPM7-deficient cells are rescued by supplementation of extracellular Mg(2+), and that the capacity of heterologously expressed TRPM7 mutants to complement TRPM7 deficiency correlates with their sensitivity to Mg(2+). Overall, our results indicate that TRPM7 has a central role in Mg(2+) homeostasis as a Mg(2+) uptake pathway regulated through a functional coupling between its channel and kinase domains.


Nature Cell Biology | 2006

Amplification of CRAC current by STIM1 and CRACM1 (Orai1)

Christine Peinelt; Monika Vig; Dana Lynn T Koomoa; Andreas Beck; Monica J. S. Nadler; Murielle Koblan-Huberson; Annette Lis; Andrea Fleig; Reinhold Penner; Jean-Pierre Kinet

Depletion of intracellular calcium stores activates store-operated calcium entry across the plasma membrane in many cells. STIM1, the putative calcium sensor in the endoplasmic reticulum, and the calcium release-activated calcium (CRAC) modulator CRACM1 (also known as Orai1) in the plasma membrane have recently been shown to be essential for controlling the store-operated CRAC current (ICRAC). However, individual overexpression of either protein fails to significantly amplify ICRAC. Here, we show that STIM1 and CRACM1 interact functionally. Overexpression of both proteins greatly potentiates ICRAC, suggesting that STIM1 and CRACM1 mutually limit store-operated currents and that CRACM1 may be the long-sought CRAC channel.


Cell | 2002

TRPM4 Is a Ca2+-Activated Nonselective Cation Channel Mediating Cell Membrane Depolarization

Pierre Launay; Andrea Fleig; Anne-Laure Perraud; Andrew M. Scharenberg; Reinhold Penner; Jean-Pierre Kinet

Calcium-activated nonselective (CAN) cation channels are expressed in various excitable and nonexcitable cells supporting important cellular responses such as neuronal bursting activity, fluid secretion, and cardiac rhythmicity. We have cloned and characterized a second form of TRPM4, TRPM4b, a member of the TRP channel family, as a molecular candidate of a CAN channel. TRPM4b encodes a cation channel of 25 pS unitary conductance that is directly activated by [Ca2+]i with an apparent K(D) of approximately 400 nM. It conducts monovalent cations such as Na+ and K+ without significant permeation of Ca2+. TRPM4b is activated following receptor-mediated Ca2+ mobilization, representing a regulatory mechanism that controls the magnitude of Ca2+ influx by modulating the membrane potential and, with it, the driving force for Ca2+ entry through other Ca2+-permeable pathways.


Current Biology | 2006

CRACM1 Multimers Form the Ion-Selective Pore of the CRAC Channel

Monika Vig; Andreas Beck; James M. Billingsley; Annette Lis; Suhel Parvez; Christine Peinelt; Dana Lynn T Koomoa; Jonathan Soboloff; Donald L. Gill; Andrea Fleig; Jean-Pierre Kinet; Reinhold Penner

Receptor-mediated Ca(2+) release from the endoplasmic reticulum (ER) is often followed by Ca(2+) entry through Ca(2+)-release-activated Ca(2+) (CRAC) channels in the plasma membrane . RNAi screens have identified STIM1 as the putative ER Ca(2+) sensor and CRACM1 (Orai1; ) as the putative store-operated Ca(2+) channel. Overexpression of both proteins is required to reconstitute CRAC currents (I(CRAC); ). We show here that CRACM1 forms multimeric assemblies that bind STIM1 and that acidic residues in the transmembrane (TM) and extracellular domains of CRACM1 contribute to the ionic selectivity of the CRAC-channel pore. Replacement of the conserved glutamate in position 106 of the first TM domain of CRACM1 with glutamine (E106Q) acts as a dominant-negative protein, and substitution with aspartate (E106D) enhances Na(+), Ba(2+), and Sr(2+) permeation relative to Ca(2+). Mutating E190Q in TM3 also affects channel selectivity, suggesting that glutamate residues in both TM1 and TM3 face the lumen of the pore. Furthermore, mutating a putative Ca(2+) binding site in the first extracellular loop of CRACM1 (D110/112A) enhances monovalent cation permeation, suggesting that these residues too contribute to the coordination of Ca(2+) ions to the pore. Our data provide unequivocal evidence that CRACM1 multimers form the Ca(2+)-selective CRAC-channel pore.


The Journal of General Physiology | 2003

TRPM7 Provides an Ion Channel Mechanism for Cellular Entry of Trace Metal Ions

Mahealani K. Monteilh-Zoller; Meredith C. Hermosura; Monica J. S. Nadler; Andrew M. Scharenberg; Reinhold Penner; Andrea Fleig

Trace metal ions such as Zn2+, Fe2+, Cu2+, Mn2+, and Co2+ are required cofactors for many essential cellular enzymes, yet little is known about the mechanisms through which they enter into cells. We have shown previously that the widely expressed ion channel TRPM7 (LTRPC7, ChaK1, TRP-PLIK) functions as a Ca2+- and Mg2+-permeable cation channel, whose activity is regulated by intracellular Mg2+ and Mg2+·ATP and have designated native TRPM7-mediated currents as magnesium-nucleotide–regulated metal ion currents (MagNuM). Here we report that heterologously overexpressed TRPM7 in HEK-293 cells conducts a range of essential and toxic divalent metal ions with strong preference for Zn2+ and Ni2+, which both permeate TRPM7 up to four times better than Ca2+. Similarly, native MagNuM currents are also able to support Zn2+ entry. Furthermore, TRPM7 allows other essential metals such as Mn2+ and Co2+ to permeate, and permits significant entry of nonphysiologic or toxic metals such as Cd2+, Ba2+, and Sr2+. Equimolar replacement studies substituting 10 mM Ca2+ with the respective divalent ions reveal a unique permeation profile for TRPM7 with a permeability sequence of Zn2+ ≈ Ni2+ >> Ba2+ > Co2+ > Mg2+ ≥ Mn2+ ≥ Sr2+ ≥ Cd2+ ≥ Ca2+, while trivalent ions such as La3+ and Gd3+ are not measurably permeable. With the exception of Mg2+, which exerts strong negative feedback from the intracellular side of the pore, this sequence is faithfully maintained when isotonic solutions of these divalent cations are used. Fura-2 quenching experiments with Mn2+, Co2+, or Ni2+ suggest that these can be transported by TRPM7 in the presence of physiological levels of Ca2+ and Mg2+, suggesting that TRPM7 represents a novel ion-channel mechanism for cellular metal ion entry into vertebrate cells.


Nature Medicine | 2008

TRPM2-mediated Ca2+ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration

Shinichiro Yamamoto; Shunichi Shimizu; Shigeki Kiyonaka; Nobuaki Takahashi; Teruaki Wajima; Yuji Hara; Takaharu Negoro; Toshihito Hiroi; Yuji Kiuchi; Takaharu Okada; Shuji Kaneko; Ingo Lange; Andrea Fleig; Reinhold Penner; Miyuki Nishi; Hiroshi Takeshima; Yasuo Mori

Reactive oxygen species (ROS) induce chemokines responsible for the recruitment of inflammatory cells to sites of injury or infection. Here we show that the plasma membrane Ca2+-permeable channel TRPM2 controls ROS-induced chemokine production in monocytes. In human U937 monocytes, hydrogen peroxide (H2O2) evokes Ca2+ influx through TRPM2 to activate Ca2+-dependent tyrosine kinase Pyk2 and amplify Erk signaling via Ras GTPase. This elicits nuclear translocation of nuclear factor-κB essential for the production of the chemokine interleukin-8 (CXCL8). In monocytes from Trpm2-deficient mice, H2O2-induced Ca2+ influx and production of the macrophage inflammatory protein-2 (CXCL2), the mouse CXCL8 functional homolog, were impaired. In the dextran sulfate sodium-induced colitis inflammation model, CXCL2 expression, neutrophil infiltration and ulceration were attenuated by Trpm2 disruption. Thus, TRPM2 Ca2+ influx controls the ROS-induced signaling cascade responsible for chemokine production, which aggravates inflammation. We propose functional inhibition of TRPM2 channels as a new therapeutic strategy for treating inflammatory diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2003

TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in [Ca2+]i

Dirk Prawitt; Mahealani K. Monteilh-Zoller; Lili R. Brixel; Christian Spangenberg; Bernhard Zabel; Andrea Fleig; Reinhold Penner

Transient receptor potential (TRP) proteins are a diverse family of proteins with structural features typical of ion channels. TRPM5, a member of the TRPM subfamily, plays an important role in taste receptors, although its activation mechanism remains controversial and its function in signal transduction is unknown. Here we characterize the functional properties of heterologously expressed human TRPM5 in HEK-293 cells. TRPM5 displays characteristics of a calcium-activated, nonselective cation channel with a unitary conductance of 25 pS. TRPM5 is a monovalent-specific, nonselective cation channel that carries Na+, K+, and Cs+ ions equally well, but not Ca2+ ions. It is directly activated by [Ca2+]i at concentrations of 0.3–1 μM, whereas higher concentrations are inhibitory, resulting in a bell-shaped dose–response curve. It activates and deactivates rapidly even during sustained elevations in [Ca2+]i, thereby inducing a transient membrane depolarization. TRPM5 does not simply mirror levels of [Ca2+]i, but instead responds to the rate of change in [Ca2+]i in that it requires rapid changes in [Ca2+]i to generate significant whole-cell currents, whereas slow elevations in [Ca2+]i to equivalent levels are ineffective. Moreover, we demonstrate that TRPM5 is not limited to taste signal transduction, because we detect the presence of TRPM5 in a variety of tissues and we identify endogenous TRPM5-like currents in a pancreatic beta cell line. TRPM5 can be activated physiologically by inositol 1,4,5-trisphosphate-producing receptor agonists, and it may therefore couple intracellular Ca2+ release to electrical activity and subsequent cellular responses.

Collaboration


Dive into the Andrea Fleig's collaboration.

Top Co-Authors

Avatar

Reinhold Penner

The Queen's Medical Center

View shared research outputs
Top Co-Authors

Avatar

Andreas Beck

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Jean-Pierre Kinet

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

F. David Horgen

The Queen's Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew M. Scharenberg

Seattle Children's Research Institute

View shared research outputs
Top Co-Authors

Avatar

Carsten Schmitz

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Ingo Lange

University of Hawaii at Manoa

View shared research outputs
Researchain Logo
Decentralizing Knowledge