Andrea Gálisová
Charles University in Prague
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrea Gálisová.
Biomacromolecules | 2014
Daniela Šmejkalová; Kristina Nesporova; Gloria Huerta-Angeles; Jakub Syrovátka; Daniel Jirák; Andrea Gálisová; Vladimír Velebný
Due to its native origin, excellent biocompatibility and biodegradability, hyaluronan (HA) represents an attractive polymer for superparamagnetic iron oxide nanoparticles (SPION) coating. Herein, we report HA polymeric micelles encapsulating oleic acid coated SPIONs, having a hydrodynamic size of about 100 nm and SPION loading capacity of 1-2 wt %. The HA-SPION polymeric micelles were found to be selectively cytotoxic toward a number of human cancer cell lines, mainly those of colon adenocarcinoma (HT-29). The selective inhibition of cell growth was even observed when the SPION loaded HA polymeric micelles were incubated with a mixture of control and cancer cells. The selective in vitro inhibition could not be connected with an enhanced CD44 uptake or radical oxygen species formation and was rather connected with a different way of SPION intracellular release. While aggregated iron particles were visualized in control cells, nonaggregated solubilized iron oxide particles were detected in cancer cells. In vivo SPION accumulation in intramuscular tumor following an intravenous micelle administration was confirmed by magnetic resonance (MR) imaging and histological analysis. Having a suitable hydrodynamic size, high magnetic relaxivity, and being cancer specific and able to accumulate in vivo in tumors, SPION-loaded HA micelles represent a promising platform for theranostic applications.
Inorganic Chemistry | 2017
Tereza Krchová; Vít Herynek; Andrea Gálisová; Jan Blahut; Petr Hermann; Jan Kotek
A new DOTA-like ligand H5do3aNP with a 2-[amino(methylphosphonic acid)]ethyl-coordinating pendant arm was prepared, and its coordinating properties were studied by NMR spectroscopy and potentiometry. The study revealed a rare slow exchange (on the 1H and 31P NMR time scale) between protonated and unprotonated complex species with a corresponding acidity constant pKA ∼ 8.0. This unusually slow time scale associated with protonation is caused by a significant geometric change from square-antiprismatic (SA) arrangement observed for protonated complex SA-[Eu(Hdo3aNP)]- to twisted-square-antiprismatic (TSA) arrangement found for deprotonated complex TSA-[Eu(do3aNP)]2-. This behavior results in simultaneous occurrence of the signals of both species in the 31P NMR spectra at approximately -118 and +70 ppm, respectively. Such an unprecedented difference in the chemical shifts between species differing by a proton is caused by a significant movement of the principal magnetic axis and by a change of phosphorus atom position in the coordination sphere of the central Eu(III) ion (i.e., by relative movement of the phosphorus atom with respect to the principal magnetic axis). It changes the sign of the paramagnetic contribution to the 31P NMR chemical shift. The properties discovered can be employed in the measurement of pH by MRS techniques as presented by proof-of-principle experiments on phantoms.
Inorganic Chemistry | 2017
Jan Blahut; Karel Bernášek; Andrea Gálisová; Vít Herynek; Ivana Císařová; Jan Kotek; Jan Lang; Stanislava Matějková; Petr Hermann
1,8-Bis(2,2,2-trifluoroethyl)cyclam (te2f) derivatives with two coordinating pendant arms involving methylenecarboxylic acid (H2te2f2a), methylenephosphonic acid (H4te2f2p), (2-pyridyl)methyl (te2f2py), and 2-aminoethyl arms (te2f2ae) in 4,11-positions were prepared, and their nickel(II) complexes were investigated as possible 19F MR tracers. The solid-state structures of several synthetic intermediates, ligands, and all complexes were confirmed by X-ray diffraction analysis. The average Ni···F distances were determined to be about 5.2 Å. All complexes exhibit a trans-III cyclam conformation with pendant arms bound in the apical positions. Kinetic inertness of the complexes is increased in the ligand order te2f2ae ≪ te2f < te2f2py ≈ H4te2f2p ≪ H2te2f2a. The [Ni(te2f2a)] complex is the most kinetically inert Ni(II) complex reported so far. Paramagnetic divalent nickel caused a shortening of 19F NMR relaxation time down to the millisecond range. Solubility, stability, and cell toxicity were only satisfactory for the [Ni(te2f2p)]2- complex. This complex was visualized by 19F MRI utilizing an ultrashort echo time (UTE) imaging pulse sequence, which led to an increase in sensitivity gain. Mesenchymal stem cells were successfully loaded with the complex (up to 0.925/5.55 pg Ni/F per cell).19F MRI using a UTE pulse sequence provided images with a good signal-to-noise ratio within the measurement time, as short as tens of minutes. The data thus proved a major sensitivity gain in 19F MRI achieved by utilization of the paramagnetic (transition) metal complex as 19F MR tracers coupled with the optimal fast imaging protocol.
International Journal of Nanomedicine | 2016
Vít Herynek; Karolina Turnovcova; Pavel Veverka; Tereza Dědourková; Pavel Žvátora; Pavla Jendelová; Andrea Gálisová; Lucie Kosinová; Klára Jiráková; Eva Syková
Introduction Magnetic nanoparticles (NPs) represent a tool for use in magnetic resonance imaging (MRI)-guided thermoablation of tumors using an external high-frequency (HF) magnetic field. To avoid local overheating, perovskite NPs with a lower Curie temperature (Tc) were proposed for use in thermotherapy. However, deposited power decreases when approaching the Curie temperature and consequently may not be sufficient for effective ablation. The goal of the study was to test this hypothesis. Methods Perovskite NPs (Tc =66°C–74°C) were characterized and tested both in vitro and in vivo. In vitro, the cells suspended with NPs were exposed to a HF magnetic field together with control samples. In vivo, a NP suspension was injected into a induced tumor in rats. Distribution was checked by MRI and the rats were exposed to a HF field together with control animals. Apoptosis in the tissue was evaluated. Results and discussion In vitro, the high concentration of suspended NPs caused an increase of the temperature in the cell sample, leading to cell death. In vivo, MRI confirmed distribution of the NPs in the tumor. The temperature in the tumor with injected NPs did not increase substantially in comparison with animals without particles during HF exposure. We proved that the deposited power from the NPs is too small and that thermoregulation of the animal is sufficient to conduct the heat away. Histology did not detect substantially higher apoptosis in NP-treated animals after ablation. Conclusion Magnetic particles with low Tc can be tracked in vivo by MRI and heated by a HF field. The particles are capable of inducing cell apoptosis in suspensions in vitro at high concentrations only. However, their effect in the case of extracellular deposition in vivo is questionable due to low deposited power and active thermoregulation of the tissue.
Contrast Media & Molecular Imaging | 2017
Andrea Gálisová; Eva Fábryová; Eva Sticova; Lucie Kosinová; Markéta Jirátová; Vít Herynek; Zuzana Berková; Jan Kříž; Milan Hájek; Daniel Jirak
Subcutaneously implanted polymeric scaffolds represent an alternative transplantation site for pancreatic islets (PIs) with the option of vascularisation enhancement by mesenchymal stem cells (MSC). Nevertheless, a proper timing of the transplantation steps is crucial. In this study, scaffolds supplemented with plastic rods were implanted into diabetic rats and two timing schemes for subsequent transplantation of bioluminescent PIs (4 or 7 days after rod removal) were examined by multimodal imaging. The cavities were left to heal spontaneously or with 10 million injected MSCs. Morphological and vascularisation changes were examined by MRI, while the localisation and viability of transplanted islets were monitored by bioluminescence imaging. The results show that PIs transplanted 4 days after rod removal showed the higher optical signal and vascularisation compared to transplantation after 7 days. MSCs slightly improved vascularisation of the graft but hindered therapeutic efficiency of PIs. Long-term glycaemia normalisation (4 months) was attained in 80% of animals. In summary, multimodal imaging confirmed the long-term survival and function of transplanted PIs in the devices. The best outcome was reached with PIs transplanted on day 4 after rod removal and therefore the suggested protocol holds a potential for further applications.
Journal of Molecular Imaging | 2016
Andrea Gálisová; Daniel Jirak; Tereza Krchová; Vít Herynek; Eva Fábryová; Jan Kotek; Milan Hájek
Introduction: Monitoring of Pancreatic Islets (PIs) after their transplantation could provide important data related to diabetes treatment; however their visualization is conditioned by the contrast agent use. The aim of this study was to label and visualize PIs labeled by the contrast agents based on Chemical Exchange Saturation Transfer (CEST) owing an advantage of contrast switching on/off and simultaneous visualization of differently treated cell population in one MR experiment. 1.2 Material and methods: Two paramagnetic chelates with europium Eu-DO3A-ae and ytterbium Yb-DO3A-ae were tested for labeling of PIs by pinocytosis and microporation. The toxicity, labeling efficacy and detection threshold were assessed for each agent. In vitro MR imaging of the labeled islets was performed on a 4.7 T scanner using a modified turbo spin-echo (RARE) sequence. 1.3 Results: The sufficient labeling efficacy was observed only by using high agent concentration compromising islet viability. The microporation procedure was not effective for islet labeling because of its invasive nature. The islets labeled by pinocytosis were visualized in a phantom by CEST imaging, however, after a long acquisition time at 4.7 T. 1.4 Conclusion: The low sensitivity of detection and impaired cellular viability of the pancreatic islets labeled by the novel CEST contrast agents represent a challenge for the further implementation of these probes as exogenous cellular labels.
Neuroscience | 2018
Helena Pivonkova; Zuzana Hermanova; Denisa Kirdajova; Thuraya Awadová; Jan Malinsky; Lukas Valihrach; Daniel Zucha; Mikael Kubista; Andrea Gálisová; Daniel Jirak; Miroslava Anderova
Transient receptor potential vanilloid type 4 (TRPV4) channels are involved in astrocyte volume regulation; however, only limited data exist about its mechanism in astrocytes in situ. We performed middle cerebral artery occlusion in adult mice, where we found twice larger edema 1 day after the insult in trpv4-/- mice compared to the controls, which was quantified using magnetic resonance imaging. This result suggests disrupted volume regulation in the brain cells in trpv4-/- mice leading to increased edema formation. The aim of our study was to elucidate whether TRPV4 channel-based volume regulation occurs in astrocytes in situ and whether the disrupted volume regulation in trpv4-/- mice might lead to higher edema formation after brain ischemia. For our experiments, we used trpv4-/- mice crossed with transgenic mice expressing enhanced green fluorescent protein (EGFP) under the control of the glial fibrillary acidic protein promoter, which leads to astrocyte visualization by EGFP expression. For quantification of astrocyte volume changes, we used two-dimensional (2D) and three-dimensional (3D) morphometrical approaches and a quantification algorithm based on fluorescence intensity changes during volume alterations induced by hypotonicity or by oxygen-glucose deprivation. In contrast to in vitro experiments, we found little evidence of the contribution of TRPV4 channels to volume regulation in astrocytes in situ in adult mice. Moreover, we only found a rare expression of TRPV4 channels in adult mouse astrocytes. Our data suggest that TRPV4 channels are not involved in astrocyte volume regulation in situ; however, they play a protective role during the ischemia-induced brain edema formation.
Journal of Materials Chemistry B | 2018
Mariia Rabyk; Andrea Gálisová; Markéta Jirátová; Vitalii Patsula; Linda Srbova; Lenka Loukotová; Jozef Parnica; Daniel Jirak; Petr Stepanek; Martin Hruby
We show that mannan-based conjugates possess exceptional features for multimodal imaging because of their biocompatibility, biodegradability and self-targeting properties. Two new mannan conjugates, containing a gadolinium complex and a fluorescent probe, one based only on polysaccharide and the other one comprising polysaccharide with poly(2-methyl-2-oxazoline) grafts, were prepared and simultaneously visualized in vitro and in vivo by magnetic resonance and fluorescence imaging. The synthesis of these mannan-based complexes was based on alkylation with allyl bromide or grafting with poly(2-methyl-2-oxazoline) chains, followed by a thiol-ene click reaction with cysteamine to introduce primary amino groups into their structure. Finally, the obtained conjugates were functionalized with contrast labels using the corresponding N-hydroxysuccinimide esters. When used to detect lymph nodes, the polymers showed better imaging properties than a commercially available contrast agent.
Dalton Transactions | 2016
Jan Blahut; Petr Hermann; Andrea Gálisová; Vít Herynek; Ivana Císařová; Zdeněk Tošner; Jan Kotek
Dalton Transactions | 2016
Tereza Krchová; Andrea Gálisová; Daniel Jirák; Petr Hermann; Jan Kotek