Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Giaccari is active.

Publication


Featured researches published by Andrea Giaccari.


Diabetes Care | 2012

Comment on:Management of Hyperglycemia in Type 2 Diabetes: APatient-Centered Approach. Position Statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD)

Andrea Giaccari; Carlo Giorda; Gabriele Riccardi; Alberto De Micheli; Graziella Bruno; Luca Monge; Simona Frontoni

Glycemic management in type 2 diabetes mellitus has become increasingly complex and, to some extent, controversial, with a widening array of pharmacological agents now available (1–5), mounting concerns about their potential adverse effects and new uncertainties regarding the benefits of intensive glycemic control on macrovascular complications (6–9). Many clinicians are therefore perplexed as to the optimal strategies for their patients. As a consequence, the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) convened a joint task force to examine the evidence and develop recommendations for antihyperglycemic therapy in nonpregnant adults with type 2 diabetes. Several guideline documents have been developed by members of these two organizations (10) and by other societies and federations (2,11–15). However, an update was deemed necessary because of contemporary information on the benefits/risks of glycemic control, recent evidence concerning efficacy and safety of several new drug classes (16,17), the withdrawal/restriction of others, and increasing calls for a move toward more patient-centered care (18,19). This statement has been written incorporating the best available evidence and, where solid support does not exist, using the experience and insight of the writing group, incorporating an extensive review by additional experts (acknowledged below). The document refers to glycemic control; yet this clearly needs to be pursued within a multifactorial risk reduction framework. This stems from the fact that patients with type 2 diabetes are at increased risk of cardiovascular morbidity and mortality; the aggressive management of cardiovascular …


Journal of Clinical Investigation | 1990

Relative contribution of glycogen synthesis and glycolysis to insulin-mediated glucose uptake. A dose-response euglycemic clamp study in normal and diabetic rats.

Luciano Rossetti; Andrea Giaccari

To examine the relationship between plasma insulin concentration and intracellular glucose metabolism in control and diabetic rats, we measured endogenous glucose production, glucose uptake, whole body glycolysis, muscle and liver glycogen synthesis, and rectus muscle glucose-6-phosphate (G-6-P) concentration basally and during the infusion of 2, 3, 4, 12, and 18 mU/kg.min of insulin. The contribution of glycolysis decreased and that of muscle glycogen synthesis increased as the insulin levels rose. Insulin-mediated glucose disposal was decreased by 20-30% throughout the insulin dose-response curve in diabetics compared with controls. While at low insulin infusions (2 and 3 mU/kg.min) reductions in both the glycolytic and glycogenic fluxes contributed to the defective tissue glucose uptake in diabetic rats, at the three higher insulin doses the impairment in muscle glycogen repletion accounted for all of the difference between diabetic and control rats. The muscle G-6-P concentration was decreased (208 +/- 11 vs. 267 +/- 18 nmol/g wet wt; P less than 0.01) compared with saline at the lower insulin infusion, but was gradually increased twofold (530 +/- 16; P less than 0.01 vs. basal) as the insulin concentration rose. The G-6-P concentration in diabetic rats was similar to control despite the reduction in glucose uptake. These data suggest that (a) glucose transport is the major determinant of glucose disposal at low insulin concentration, while the rate-limiting step shifts to an intracellular site at high physiological insulin concentration; and (b) prolonged moderate hyperglycemia and hypoinsulinemia determine two distinct cellular defects in skeletal muscle at the levels of glucose transport/phosphorylation and glycogen synthesis.


Journal of Clinical Investigation | 1993

Mechanism by which hyperglycemia inhibits hepatic glucose production in conscious rats. Implications for the pathophysiology of fasting hyperglycemia in diabetes.

Luciano Rossetti; Andrea Giaccari; Nir Barzilai; Kathleen Howard; Gary Sebel; Meizhu Hu

To examine the relationship between the plasma glucose concentration (PG) and the pathways of hepatic glucose production (HGP), five groups of conscious rats were studied after a 6-h fast: (a) control rats (PG = 8.0 +/- 0.2 mM); (b) control rats (PG = 7.9 +/- 0.2 mM) with somatostatin and insulin replaced at the basal level; (c) control rats (PG = 18.1 +/- 0.2 mM) with somatostatin, insulin replaced at the basal level, and glucose infused to acutely raise plasma glucose by 10 mM; (d) control rats (PG = 18.0 +/- 0.2 mM) with somatostatin and glucose infusions to acutely reproduce the metabolic conditions of diabetic rats, i.e., hyperglycemia and moderate hypoinsulinemia; (e) diabetic rats (PG = 18.4 +/- 2.3 mM). All rats received an infusion of [3-3H]glucose and [U-14C]lactate. The ratio between hepatic [14C]UDP-glucose sp act (SA) and 2X [14C]-phosphoenolpyruvate (PEP) SA (the former reflecting glucose-6-phosphate SA) measured the portion of total glucose output derived from PEP-gluconeogenesis. In control rats, HGP was decreased by 58% in hyperglycemic compared to euglycemic conditions (4.5 +/- 0.3 vs. 10.6 +/- 0.2 mg/kg.min; P < 0.01). When evaluated under identical glycemic conditions, HGP was significantly increased in diabetic rats (18.9 +/- 1.4 vs. 6.2 +/- 0.4 mg/kg.min; P < 0.01). In control rats, hyperglycemia increased glucose cycling (by 2.5-fold) and the contribution of gluconeogenesis to HGP (91% vs. 45%), while decreasing that of glycogenolysis (9% vs. 55%). Under identical plasma glucose and insulin concentrations, glucose cycling in diabetic rats was decreased (by 21%) and the percent contribution of gluconeogenesis to HGP (73%) was similar to that of controls (84%). These data indicate that: (a) hyperglycemia causes a marked inhibition of HGP mainly through the suppression of glycogenolysis and the increase in glucokinase flux, with no apparent changes in the fluxes through gluconeogenesis and glucose-6-phosphatase; under similar hyperglycemic hypoinsulinemic conditions: (b) HGP is markedly increased in diabetic rats; however, (c) the contribution of glycogenolysis and gluconeogenesis to HGP is similar to control animals.


Current Diabetes Reviews | 2011

The Role of Oxidative Stress in the Pathogenesis of Type 2 Diabetes Mellitus Micro- and Macrovascular Complications: Avenues for a Mechanistic-Based Therapeutic Approach

Franco Folli; Domenico Corradi; Paolo Fanti; Alberto M. Davalli; Ana Maria Paez; Andrea Giaccari; Carla Perego; Giovanna Muscogiuri

A growing body of evidence suggests that oxidative stress plays a key role in the pathogenesis of micro- and macrovascular diabetic complications. The increased oxidative stress in subjects with type 2 diabetes is a consequence of several abnormalities, including hyperglycemia, insulin resistance, hyperinsulinemia, and dyslipidemia, each of which contributes to mitochondrial superoxide overproduction in endothelial cells of large and small vessels as well as the myocardium. The unifying pathophysiological mechanism that underlies diabetic complications could be explained by increased production of reactive oxygen species (ROS) via: (1) the polyol pathway flux, (2) increased formation of advanced glycation end products (AGEs), (3) increased expression of the receptor for AGEs, (4) activation of protein kinase C isoforms, and (5) overactivity of the hexosamine pathway. Furthermore, the effects of oxidative stress in individuals with type 2 diabetes are compounded by the inactivation of two critical anti-atherosclerotic enzymes: endothelial nitric oxide synthase and prostacyclin synthase. Of interest, the results of clinical trials in patients with type 2 diabetes in whom intensive management of all the components of the metabolic syndrome (hyperglycemia, hypercholesterolemia, and essential hypertension) was attempted (with agents that exert a beneficial effect on serum glucose, serum lipid concentrations, and blood pressure, respectively) showed a decrease in adverse cardiovascular end points. The purpose of this review is (1) to examine the mechanisms that link oxidative stress to micro- and macrovascular complications in subjects with type 2 diabetes and (2) to consider the therapeutic opportunities that are presented by currently used therapeutic agents which possess antioxidant properties as well as new potential antioxidant substances.


Obesity | 2010

25-Hydroxyvitamin D Concentration Correlates With Insulin-Sensitivity and BMI in Obesity

Giovanna Muscogiuri; Gian Pio Sorice; Annamaria Prioletta; Caterina Policola; Silvia Della Casa; Alfredo Pontecorvi; Andrea Giaccari

The prevalence of hypovitaminosis D is high among obese subjects. Further, low 25‐hydroxyvitamin D (25(OH)D) concentration has been postulated to be a risk factor for type 2 diabetes, although its relation with insulin‐sensitivity is not well investigated. Thus, we aimed to investigate the relationship between 25(OH)D concentration and insulin‐sensitivity, using the glucose clamp technique. In total, 39 subjects with no known history of diabetes mellitus were recruited. The association of 25(OH)D concentration with insulin‐sensitivity was evaluated by hyperinsulinemic euglycemic clamp. Subjects with low 25(OH)D (<50 nmol/l) had higher BMI (P = 0.048), parathyroid hormone (PTH) (P = 0.040), total cholesterol (P = 0.012), low‐density lipoprotein (LDL) cholesterol (P = 0.044), triglycerides (P = 0.048), and lower insulin‐sensitivity as evaluated by clamp study (P = 0.047). There was significant correlation between 25(OH)D and BMI (r = −0.58; P = 0.01), PTH (r = −0.44; P < 0.01), insulin‐sensitivity (r = 0.43; P < 0.01), total (r = −0.34; P = 0.030) and LDL (r = −0.40; P = 0.023) (but not high‐density lipoprotein (HDL)) cholesterol, and triglycerides (r = 0.45; P = 0.01). Multivariate analysis using 25(OH)D concentration, BMI, insulin‐sensitivity, HDL cholesterol, LDL cholesterol, total cholesterol, and triglycerides, as the cofactors was performed. BMI was found to be the most powerful predictor of 25(OH)D concentration (r = −0.52; P < 0.01), whereas insulin‐sensitivity was not significant. Our study suggested that there is no cause–effect relationship between vitamin D and insulin‐sensitivity. In obesity, both low 25(OH)D concentration and insulin‐resistance appear to be dependent on the increased body size.


Nature Medicine | 2013

Blockade of receptor activator of nuclear factor-κB (RANKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus.

Stefan Kiechl; Jürgen Wittmann; Andrea Giaccari; Michael Knoflach; Peter Willeit; Aline Bozec; Alexander R. Moschen; Giovanna Muscogiuri; Gian Pio Sorice; Trayana Kireva; Monika Summerer; Stefan Wirtz; Julia Luther; Dirk Mielenz; Ulrike Billmeier; Georg Egger; Agnes Mayr; Friedrich Oberhollenzer; Florian Kronenberg; Michael Orthofer; Josef M. Penninger; James B. Meigs; Enzo Bonora; Herbert Tilg; Johann Willeit; Georg Schett

Hepatic insulin resistance is a driving force in the pathogenesis of type 2 diabetes mellitus (T2DM) and is tightly coupled with excessive storage of fat and the ensuing inflammation within the liver. There is compelling evidence that activation of the transcription factor nuclear factor-κB (NF-κB) and downstream inflammatory signaling pathways systemically and in the liver are key events in the etiology of hepatic insulin resistance and β-cell dysfunction, although the molecular mechanisms involved are incompletely understood. We here test the hypothesis that receptor activator of NF-κB ligand (RANKL), a prototypic activator of NF-κB, contributes to this process using both an epidemiological and experimental approach. In the prospective population-based Bruneck Study, a high serum concentration of soluble RANKL emerged as a significant (P < 0.001) and independent risk predictor of T2DM manifestation. In close agreement, systemic or hepatic blockage of RANKL signaling in genetic and nutritional mouse models of T2DM resulted in a marked improvement of hepatic insulin sensitivity and amelioration or even normalization of plasma glucose concentrations and glucose tolerance. Overall, this study provides evidence for a role of RANKL signaling in the pathogenesis of T2DM. If so, translation to the clinic may be feasible given current pharmacological strategies to lower RANKL activity to treat osteoporosis.


Acta Diabetologica | 2001

Acute hyperglycemia and acute hyperinsulinemia decrease plasma fibrinolytic activity and increase plasminogen activator inhibitor type 1 in the rat

Assunta Pandolfi; Andrea Giaccari; C. Cilli; M. M. Alberta; L. Morviducci; E. A. De Filippis; A. Buongiorno; Giuliana Pellegrini; Capani F; Agostino Consoli

Abstract Decreased plasma fibrinolysis may contribute to accelerated atherothrombosis in diabetes. To observe whether hyperglycemia and hyperinsulinemia, common findings in type 2 diabetes, acutely affect plasma fibrinolysis in vivo, we evaluated plasma fibrinolysis (lysis of fibrin plates, free PAI-1 activity and t-PA activity) in the rat after a hyperglycemic euinsulinemic clamp (n=8), an euglycemic hyperinsulinemic clamp (n=7) or a saline infusion (n=15). Plasma fibrinolytic activity was sharply reduced after both the hyperglycemic and hyperinsulinemic clamps as compared to the respective controls (mean lysis areas on the fibrin plate, 139±21 vs. 323±30 mm2, p<0.001; 78±27 vs. 312±27 mm2p<0.001, respectively). Plasma PAI-1 activity was greater after both hyperglycemic and hyperinsulinemic clamps as compared to saline infusion (6.6±2.6 vs. 1.6±0.6 IU/ml, p<0.001; 26±4 vs. 1.3±0.7 IU/ml, p<0.0001, respectively). Plasma t-PA activity was significantly reduced both after the hyperglycemic (0.36±0.15 vs. 2.17±0.18 IU/ml in controls, p<0.001) and the hyperinsulinemic (0.3±0.1 vs. 2.3±0.3 IU/ml in control, p<0.001) clamps. These data show that in vivo both acute hyperglycemia and acute hyperinsulinemia can decrease plasma fibrinolytic potential and that this is due to increased plasma PAI-1 and decreased free t-PA activities.


Diabetes | 2014

Insulin Resistance Alters Islet Morphology in Nondiabetic Humans

Teresa Mezza; Giovanna Muscogiuri; Gian Pio Sorice; Gennaro Clemente; Jiang Hu; Alfredo Pontecorvi; Jens J. Holst; Andrea Giaccari; Rohit N. Kulkarni

Type 2 diabetes is characterized by poor glucose uptake in metabolic tissues and manifests when insulin secretion fails to cope with worsening insulin resistance. In addition to its effects on skeletal muscle, liver, and adipose tissue metabolism, it is evident that insulin resistance also affects pancreatic β-cells. To directly examine the alterations that occur in islet morphology as part of an adaptive mechanism to insulin resistance, we evaluated pancreas samples obtained during pancreatoduodenectomy from nondiabetic subjects who were insulin-resistant or insulin-sensitive. We also compared insulin sensitivity, insulin secretion, and incretin levels between the two groups. We report an increased islet size and an elevated number of β- and α-cells that resulted in an altered β-cell–to–α-cell area in the insulin- resistant group. Our data in this series of studies suggest that neogenesis from duct cells and transdifferentiation of α-cells are potential contributors to the β-cell compensatory response to insulin resistance in the absence of overt diabetes.


Nutrition Metabolism and Cardiovascular Diseases | 2012

Can vitamin D deficiency cause diabetes and cardiovascular diseases? Present evidence and future perspectives.

Giovanna Muscogiuri; Gian Pio Sorice; R. Ajjan; Teresa Mezza; S. Pilz; Annamaria Prioletta; R. Scragg; S.L. Volpe; Miles D. Witham; Andrea Giaccari

Several studies have shown that vitamin D may play a role in many biochemical mechanisms in addition to bone and calcium metabolism. Recently, vitamin D has sparked widespread interest because of its involvement in the homeostasis of the cardiovascular system. Hypovitaminosis D has been associated with obesity, related to trapping in adipose tissue due to its lipophilic structure. In addition, vitamin D deficiency is associated with increased risk of cardiovascular disease (CVD) and this may be due to the relationship between low vitamin D levels and obesity, diabetes mellitus, dyslipidaemia, endothelial dysfunction and hypertension. However, although vitamin D has been identified as a potentially important marker of CVD, the mechanisms through which it might modulate cardiovascular risk are not fully understood. Given this background, in this work we summarise clinical retrospective and prospective observational studies linking vitamin D levels with cardio-metabolic risk factors and vascular outcome. Moreover, we review various randomised controlled trials (RCTs) investigating the effects of vitamin D supplementation on surrogate markers of cardiovascular risk. Considering the high prevalence of hypovitaminosis D among patients with high cardiovascular risk, vitamin D replacement therapy in this population may be warranted; however, further RCTs are urgently needed to establish when to begin vitamin D therapy, as well as to determine the dose and route and duration of administration.


Nutrition Metabolism and Cardiovascular Diseases | 2009

Glucose toxicity: the leading actor in the pathogenesis and clinical history of type 2 diabetes - mechanisms and potentials for treatment

Andrea Giaccari; Gian Pio Sorice; Giovanna Muscogiuri

AIM Although it is now well established that the deleterious effects of chronic hyperglycaemia (i.e., glucose toxicity) play an important role in the progressive impairment of insulin secretion and sensitivity, the two major actors of the pathogenesis of type 2 diabetes mellitus, the precise biochemical and molecular mechanisms responsible for the defects induced by glucose toxicity still remain to be defined. DATA SYNTHESIS here we will briefly report on convincing evidence that glucose toxicity acts through oxidative stress, modifications in the exosamine pathway, protein kinase C and others. After inducing or contributing to the genesis of type 2 diabetes, these same mechanisms are considered responsible for the appearance and worsening of diabetic specific microvascular complications, while its role in increasing the risk of cardiovascular diseases is less clear. Recent intervention studies (ADVANCE, ACCORD, VADT), conducted to evaluate the effects of strict glycaemic control, apparently failed to demonstrate an effect of glucose toxicity on cardiovascular diseases, at least in secondary prevention or when diabetes is present for a prolonged time. The re-examination, 20 years later, of the population studied in the UKPDS study, however, clearly demonstrated that the earliest is the strict glycaemic control reached, the lowest is the incidence of cardiovascular diseases observed, including myocardial infarction. CONCLUSION The acquaintance of the role of glucose toxicity should strongly influence the usual therapeutic choices and glycaemic targets where the reduced or absent risk of hypoglycaemia, durability of action, and data on prolonged safety should be the preferred characteristics of the drug of choice in the treatment of type 2 diabetes mellitus.

Collaboration


Dive into the Andrea Giaccari's collaboration.

Top Co-Authors

Avatar

Gian Pio Sorice

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Teresa Mezza

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Giovanna Muscogiuri

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Alfredo Pontecorvi

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

G. Tamburrano

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Annamaria Prioletta

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Paolo Sbraccia

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Frida Leonetti

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

A. Buongiorno

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Chiara Maria Assunta Cefalo

Catholic University of the Sacred Heart

View shared research outputs
Researchain Logo
Decentralizing Knowledge