Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Gloria-Soria is active.

Publication


Featured researches published by Andrea Gloria-Soria.


Molecular Ecology | 2016

Global genetic diversity of Aedes aegypti

Andrea Gloria-Soria; Diego Ayala; Ambicadutt Bheecarry; Olger Calderón-Arguedas; Dave D. Chadee; Marina B. Chiappero; Maureen Coetzee; Khouaildi B. Elahee; Ildefonso Fernández-Salas; Hany A. Kamal; Basile Kamgang; Emad I. M. Khater; Laura D. Kramer; Vicki Kramer; Alma Lopez‐Solis; Joel Lutomiah; Ademir Jesus Martins; María V. Micieli; Christophe Paupy; Alongkot Ponlawat; Nil Rahola; Syed Basit Rasheed; Joshua B. Richardson; Amag A. Saleh; Rosa M. Sanchez-Casas; Gonçalo Seixas; Carla A. Sousa; Walter J. Tabachnick; Adriana Troyo; Jeffrey R. Powell

Mosquitoes, especially Aedes aegypti, are becoming important models for studying invasion biology. We characterized genetic variation at 12 microsatellite loci in 79 populations of Ae. aegypti from 30 countries in six continents, and used them to infer historical and modern patterns of invasion. Our results support the two subspecies Ae. aegypti formosus and Ae. aegypti aegypti as genetically distinct units. Ae. aegypti aegypti populations outside Africa are derived from ancestral African populations and are monophyletic. The two subspecies co‐occur in both East Africa (Kenya) and West Africa (Senegal). In rural/forest settings (Rabai District of Kenya), the two subspecies remain genetically distinct, whereas in urban settings, they introgress freely. Populations outside Africa are highly genetically structured likely due to a combination of recent founder effects, discrete discontinuous habitats and low migration rates. Ancestral populations in sub‐Saharan Africa are less genetically structured, as are the populations in Asia. Introduction of Ae. aegypti to the New World coinciding with trans‐Atlantic shipping in the 16th to 18th centuries was followed by its introduction to Asia in the late 19th century from the New World or from now extinct populations in the Mediterranean Basin. Aedes mascarensis is a genetically distinct sister species to Ae. aegypti s.l. This study provides a reference database of genetic diversity that can be used to determine the likely origin of new introductions that occur regularly for this invasive species. The genetic uniqueness of many populations and regions has important implications for attempts to control Ae. aegypti, especially for the methods using genetic modification of populations.


PLOS Neglected Tropical Diseases | 2014

Origin of the dengue fever mosquito, Aedes aegypti, in California.

Andrea Gloria-Soria; Julia E. Brown; Vicki Kramer; Melissa Hardstone Yoshimizu; Jeffrey R. Powell

Dengue fever is among the most widespread vector-borne infectious diseases. The primary vector of dengue is the Aedes aegypti mosquito. Ae. aegypti is prevalent in the tropics and sub-tropics and is closely associated with human habitats outside its native range of Africa. While long established in the southeastern United States of America where dengue is re-emerging, breeding populations have never been reported from California until the summer of 2013. Using 12 highly variable microsatellite loci and a database of reference populations, we have determined that the likely source of the California introduction is the southeastern United States, ruling out introductions from abroad, from the geographically closer Arizona or northern Mexico populations, or an accidental release from a research laboratory. The power to identify the origin of new introductions of invasive vectors of human disease relies heavily on the availability of a panel of reference populations. Our work demonstrates the importance of generating extensive reference databases of genetically fingerprinted human-disease vector populations to aid public health efforts to prevent the introduction and spread of vector-borne diseases.


G3: Genes, Genomes, Genetics | 2015

A Multipurpose, High-Throughput Single-Nucleotide Polymorphism Chip for the Dengue and Yellow Fever Mosquito, Aedes aegypti

Benjamin R. Evans; Andrea Gloria-Soria; Lin Hou; Carolyn S. McBride; Mariangela Bonizzoni; Hongyu Zhao; Jeffrey R. Powell

The dengue and yellow fever mosquito, Aedes aegypti, contributes significantly to global disease burden. Genetic study of Aedes aegypti is essential to understanding its evolutionary history, competence as a disease vector, and the effects and efficacy of vector control methods. The prevalence of repeats and transposable elements in the Aedes aegypti genome complicates marker development and makes genome-wide genetic study challenging. To overcome these challenges, we developed a high-throughput genotyping chip, Axiom_aegypti1. This chip screens for 50,000 single-nucleotide polymorphisms present in Aedes aegypti populations from around the world. The array currently used genotypes 96 samples simultaneously. To ensure that these markers satisfy assumptions commonly made in many genetic analyses, we tested for Mendelian inheritance and linkage disequilibrium in laboratory crosses and a wild population, respectively. We have validated more than 25,000 of these markers to date, and expect this number to increase with more sampling. We also present evidence of the chip’s efficacy in distinguishing populations throughout the world. The markers on this chip are ideal for applications ranging from population genetics to genome-wide association studies. This tool makes rapid, cost-effective, and comparable genotype data attainable to diverse sets of Aedes aegypti researchers, from those interested in potential range shifts due to climate change to those characterizing the genetic underpinnings of its competence to transmit disease.


PLOS Neglected Tropical Diseases | 2014

Genetic Diversity of Brazilian Aedes aegypti: Patterns following an Eradication Program

Fernando A. Monteiro; Renata Shama; Ademir Jesus Martins; Andrea Gloria-Soria; Julia E. Brown; Jeffrey R. Powell

Background Aedes aegypti is the most important vector of dengue fever in Brazil, where severe epidemics have recently taken place. Ae. aegypti in Brazil was the subject of an intense eradication program in the 1940s and 50s to control yellow fever. Brazil was the largest country declared free of this mosquito by the Pan-American Health Organization in 1958. Soon after relaxation of this program, Ae. aegypti reappeared in this country, and by the early 1980s dengue fever had been reported. The aim of this study is to analyze the present-day genetic patterns of Ae. aegypti populations in Brazil. Methodology/Principal Findings We studied the genetic variation in samples of 11 widely spread populations of Ae. aegypti in Brazil based on 12 well-established microsatellite loci. Our principal finding is that present-day Brazilian Ae. aegypti populations form two distinct groups, one in the northwest and one in the southeast of the country. These two groups have genetic affinities to northern South American countries and the Caribbean, respectively. This is consistent with what has been reported for other genetic markers such as mitochondrial DNA and allele frequencies at the insecticide resistance gene, kdr. Conclusions/Significance We conclude that the genetic patterns in present day populations of Ae. aegypti in Brazil are more consistent with a complete eradication of the species in the recent past followed by re-colonization, rather than the alternative possibility of expansion from residual pockets of refugia. At least two colonizations are likely to have taken place, one from northern South American countries (e.g., Venezuela) that founded the northwestern group, and one from the Caribbean that founded the southeastern group. The proposed source areas were never declared free of Ae. aegypti.


PLOS Neglected Tropical Diseases | 2017

Tracking the return of Aedes aegypti to Brazil, the major vector of the dengue, chikungunya and Zika viruses

Panayiota Kotsakiozi; Andrea Gloria-Soria; Adalgisa Caccone; Benjamin R. Evans; Renata Schama; Ademir Jesus Martins; Jeffrey R. Powell

Background Aedes aegypti, commonly known as “the yellow fever mosquito”, is of great medical concern today primarily as the major vector of dengue, chikungunya and Zika viruses, although yellow fever remains a serious health concern in some regions. The history of Ae. aegypti in Brazil is of particular interest because the country was subjected to a well-documented eradication program during 1940s-1950s. After cessation of the campaign, the mosquito quickly re-established in the early 1970s with several dengue outbreaks reported during the last 30 years. Brazil can be considered the country suffering the most from the yellow fever mosquito, given the high number of dengue, chikungunya and Zika cases reported in the country, after having once been declared “free of Ae. aegypti”. Methodology/Principal findings We used 12 microsatellite markers to infer the genetic structure of Brazilian Ae. aegypti populations, genetic variability, genetic affinities with neighboring geographic areas, and the timing of their arrival and spread. This enabled us to reconstruct their recent history and evaluate whether the reappearance in Brazil was the result of re-invasion from neighboring non-eradicated areas or re-emergence from local refugia surviving the eradication program. Our results indicate a genetic break separating the northern and southern Brazilian Ae. aegypti populations, with further genetic differentiation within each cluster, especially in southern Brazil. Conclusions/Significance Based on our results, re-invasions from non-eradicated regions are the most likely scenario for the reappearance of Ae. aegypti in Brazil. While populations in the northern cluster are likely to have descended from Venezuela populations as early as the 1970s, southern populations seem to have derived more recently from northern Brazilian areas. Possible entry points are also revealed within both southern and northern clusters that could inform strategies to control and monitor this important arbovirus vector.


Molecular Biology and Evolution | 2012

Evolutionary Genetics of the Hydroid Allodeterminant alr2

Andrea Gloria-Soria; Maria A. Moreno; Philip O. Yund; Fadi G. Lakkis; Stephen L. Dellaporta; Leo W. Buss

We surveyed genetic variation in alr2, an allodeterminant of the colonial hydroid Hydractinia symbiolongicarpus. We generated cDNA from a sample of 239 Hydractinia colonies collected at Lighthouse Point, Connecticut, and identified 473 alr2 alleles, 198 of which were unique. Rarefaction analysis suggested that the sample was near saturation. Most alleles were rare, with 86% occurring at frequencies of 1% or less. Alleles were highly variable, diverging on average by 18% of the amino acids in a predicted extracellular domain of the molecule. Analysis of 152 full-length alleles confirmed the existence of two structural types, defined by exons 4-8 of the gene. Several residues of the predicted immunoglobulin superfamily-like domains display signatures of positive selection. We also identified 77 unique alr2 pseudogene sequences from 85 colonies. Twenty-seven of these sequences matched expressed alr2 sequences from other colonies. This observation is consistent with pseudogenes contributing to alr2 diversification through sequence donation. A more limited collection of animals was made from a distant, relict population of H. symbiolongicarpus. Sixty percent of the unique sequences identified in this sample were found to match sequences from the Lighthouse Point population. The large number of alr2 alleles, their degree of divergence, the predominance of rare alleles in the population, their persistence over broad spatial and temporal scales, and the signatures of positive selection in multiple residues of the putative recognition domain paint a consistent picture of negative-frequency-dependent selection operating in this system. The genetic diversity observed at alr2 is comparable to that of the most highly polymorphic genetic systems known to date.


PLOS Neglected Tropical Diseases | 2017

Multiple introductions of the dengue vector, Aedes aegypti, into California

Evlyn Pless; Andrea Gloria-Soria; Benjamin R. Evans; Vicki Kramer; Bethany G. Bolling; Walter J. Tabachnick; Jeffrey R. Powell

The yellow fever mosquito Aedes aegypti inhabits much of the tropical and subtropical world and is a primary vector of dengue, Zika, and chikungunya viruses. Breeding populations of A. aegypti were first reported in California (CA) in 2013. Initial genetic analyses using 12 microsatellites on collections from Northern CA in 2013 indicated the South Central US region as the likely source of the introduction. We expanded genetic analyses of CA A. aegypti by: (a) examining additional Northern CA samples and including samples from Southern CA, (b) including more southern US populations for comparison, and (c) genotyping a subset of samples at 15,698 SNPs. Major results are: (1) Northern and Southern CA populations are distinct. (2) Northern populations are more genetically diverse than Southern CA populations. (3) Northern and Southern CA groups were likely founded by two independent introductions which came from the South Central US and Southwest US/northern Mexico regions respectively. (4) Our genetic data suggest that the founding events giving rise to the Northern CA and Southern CA populations likely occurred before the populations were first recognized in 2013 and 2014, respectively. (5) A Northern CA population analyzed at multiple time-points (two years apart) is genetically stable, consistent with permanent in situ breeding. These results expand previous work on the origin of California A. aegypti with the novel finding that this species entered California on multiple occasions, likely some years before its initial detection. This work has implications for mosquito surveillance and vector control activities not only in California but also in other regions where the distribution of this invasive mosquito is expanding.


American Journal of Tropical Medicine and Hygiene | 2015

Evidence of Limited Polyandry in a Natural Population of Aedes aegypti

Joshua B. Richardson; Samuel Jameson; Andrea Gloria-Soria; Dawn M. Wesson; Jeff R. Powell

The mosquito Aedes aegypti is a vector of yellow fever, dengue, and chikungunya. Control of the insect is crucial to stop the spread of dengue and chikungunya, so it is critically important to understand its mating behavior. Primarily, based on laboratory behavior, it has long been assumed that Ae. aegypti females mate once in their lifetime. However, multiple inseminations have been observed in semi-field and laboratory settings, and in closely related species. Here, we report the first evidence of polyandry in a natural population of Ae. aegypti. Female Ae. aegypti were captured around the New Orleans, LA, metropolitan area. They were offered a blood meal and allowed to lay eggs, which were reared to the third-instar larval stage. A parentage analysis using four microsatellite loci was performed. Out of 48 families, 3 showed evidence of multiple paternity. An expanded analysis of these three families found that one family group included offspring contributed by three fathers, and the other two included offspring from two fathers. This result establishes that polyandry can occur in a small proportion of Ae. aegypti females in a natural setting. This could complicate future genetic control efforts and has implications for sampling for population genetics.


G3: Genes, Genomes, Genetics | 2011

Genetic Background and Allorecognition Phenotype in Hydractinia symbiolongicarpus

Anahid E. Powell; Maria João Moreno; Andrea Gloria-Soria; Fadi G. Lakkis; Stephen L. Dellaporta; Leo W. Buss

The Hydractinia allorecognition complex (ARC) was initially identified as a single chromosomal interval using inbred and congenic lines. The production of defined lines necessarily homogenizes genetic background and thus may be expected to obscure the effects of unlinked allorecognition loci should they exist. Here, we report the results of crosses in which inbred lines were out-crossed to wild-type animals in an attempt to identify dominant, codominant, or incompletely dominant modifiers of allorecognition. A claim for the existence of modifiers unlinked to ARC was rejected for three different genetic backgrounds. Estimates of the genetic map distance of ARC in two wild-type haplotypes differed markedly from one another and from that measured in congenic lines. These results suggest that additional allodeterminants exist in the Hydractinia ARC.


American Journal of Tropical Medicine and Hygiene | 2017

Origin of a High-Latitude Population of Aedes aegypti in Washington, DC

Andrea Gloria-Soria; Andrew Lima; Diane D. Lovin; Joanne M. Cunningham; David W. Severson; Jeffrey R. Powell

An overwintering population of Aedes aegypti has been documented in the Capitol Hill neighborhood of Washington, DC, since 2011. Mitochondrial cytochrome oxidase I (mtCOI) sequence data presented in a previous study traced the origin to the New World. Here, we use microsatellite and 14,071 single nucleotide polymorphisms along with mitochondrial DNA (mtDNA) sequences on Washington Ae. aegypti samples and samples from potential sources to further narrow the origin of this population. Genetically, Washington Ae. aegypti are closest to populations in Florida, meaning this is the most likely source. Florida experienced the first mosquito-borne transmission of dengue in the United States after decades of absence of this disease, as well as local transmission of chikungunya and Zika in recent years. This suggests that the Capitol Hill, Washington, DC population of Ae. aegypti is capable of transmitting viruses such as dengue, chikungunya, and Zika in modern US city environments.

Collaboration


Dive into the Andrea Gloria-Soria's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fadi G. Lakkis

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vicki Kramer

California Department of Public Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge