Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea H. Németh is active.

Publication


Featured researches published by Andrea H. Németh.


Nature Genetics | 2001

A conserved sorting-associated protein is mutant in chorea-acanthocytosis.

Luca Rampoldi; Carol Dobson-Stone; Justin P. Rubio; Adrian Danek; Richard M. Chalmers; Nicholas W. Wood; Christine Verellen; Xavier Ferrer; Alessandro Malandrini; Gian Maria Fabrizi; Robert H. Brown; Jeffery M. Vance; Margaret A. Pericak-Vance; Gabrielle Rudolf; Sophie Carré; Elisa Alonso; Michela Manfredi; Andrea H. Németh; Anthony P. Monaco

Chorea-acanthocytosis (CHAC, MIM 200150) is an autosomal recessive neurodegenerative disorder characterized by the gradual onset of hyperkinetic movements and abnormal erythrocyte morphology (acanthocytosis). Neurological findings closely resemble those observed in Huntington disease. We identified a gene in the CHAC critical region and found 16 different mutations in individuals with chorea-acanthocytosis. CHAC encodes an evolutionarily conserved protein that is probably involved in protein sorting.


European Journal of Human Genetics | 2002

Mutational spectrum of the CHAC gene in patients with chorea-acanthocytosis

Carol Dobson-Stone; Adrian Danek; Luca Rampoldi; Richard J. Hardie; Richard M. Chalmers; Nicholas W. Wood; Saeed Bohlega; Maria Teresa Dotti; Antonio Federico; Masami Shizuka; Makoto Tanaka; Mitsunori Watanabe; Yoshio Ikeda; Mitchell F. Brin; Lev G. Goldfarb; Barbara I. Karp; Saidi A. Mohiddin; Lameh Fananapazir; Alexander Storch; Alan Fryer; Paul Maddison; Igor Sibon; Paulo Cesar Trevisol-Bittencourt; Carlos Singer; Ignacio Requena Caballero; Jan O. Aasly; Klaus Schmierer; Reinhard Dengler; Lutz Peter Hiersemenzel; Massimo Zeviani

Chorea-acanthocytosis (ChAc) is an autosomal recessive neurological disorder whose characteristic features include hyperkinetic movements and abnormal red blood cell morphology. Mutations in the CHAC gene on 9q21 were recently found to cause chorea-acanthocytosis. CHAC encodes a large, novel protein with a yeast homologue implicated in protein sorting. In this study, all 73 exons plus flanking intronic sequence in CHAC were screened for mutations by denaturing high-performance liquid chromatography in 43 probands with ChAc. We identified 57 different mutations, 54 of which have not previously been reported, in 39 probands. The novel mutations comprise 15 nonsense, 22 insertion/deletion, 15 splice-site and two missense mutations and are distributed throughout the CHAC gene. Three mutations were found in multiple families within this or our previous study. The preponderance of mutations that are predicted to cause absence of gene product is consistent with the recessive inheritance of this disease. The high proportion of splice-site mutations found is probably a reflection of the large number of exons that comprise the CHAC gene. The CHAC protein product, chorein, appears to have a certain tolerance to amino-acid substitutions since only two out of nine substitutions described here appear to be pathogenic.


Brain | 2013

Next generation sequencing for molecular diagnosis of neurological disorders using ataxias as a model

Andrea H. Németh; Alexandra Kwasniewska; Stefano Lise; R Parolin Schnekenberg; Becker Ebe.; K D Bera; M Shanks; Lorna Gregory; David Buck; M. Zameel Cader; Kevin Talbot; R de Silva; Nicholas A. Fletcher; R Hastings; Sandeep Jayawant; Patrick J. Morrison; P Worth; M Taylor; J Tolmie; M O'Regan; R Valentine; E Packham; Julie Evans; A Seller; Jiannis Ragoussis

Many neurological conditions are caused by immensely heterogeneous gene mutations. The diagnostic process is often long and complex with most patients undergoing multiple invasive and costly investigations without ever reaching a conclusive molecular diagnosis. The advent of massively parallel, next-generation sequencing promises to revolutionize genetic testing and shorten the ‘diagnostic odyssey’ for many of these patients. We performed a pilot study using heterogeneous ataxias as a model neurogenetic disorder to assess the introduction of next-generation sequencing into clinical practice. We captured 58 known human ataxia genes followed by Illumina Next-Generation Sequencing in 50 highly heterogeneous patients with ataxia who had been extensively investigated and were refractory to diagnosis. All cases had been tested for spinocerebellar ataxia 1–3, 6, 7 and Friedrich’s ataxia and had multiple other biochemical, genetic and invasive tests. In those cases where we identified the genetic mutation, we determined the time to diagnosis. Pathogenicity was assessed using a bioinformatics pipeline and novel variants were validated using functional experiments. The overall detection rate in our heterogeneous cohort was 18% and varied from 8.3% in those with an adult onset progressive disorder to 40% in those with a childhood or adolescent onset progressive disorder. The highest detection rate was in those with an adolescent onset and a family history (75%). The majority of cases with detectable mutations had a childhood onset but most are now adults, reflecting the long delay in diagnosis. The delays were primarily related to lack of easily available clinical testing, but other factors included the presence of atypical phenotypes and the use of indirect testing. In the cases where we made an eventual diagnosis, the delay was 3–35 years (mean 18.1 years). Alignment and coverage metrics indicated that the capture and sequencing was highly efficient and the consumable cost was ∼£400 (€460 or US


European Journal of Human Genetics | 2013

Next-generation sequencing (NGS) as a diagnostic tool for retinal degeneration reveals a much higher detection rate in early-onset disease.

Morag E Shanks; Susan M. Downes; Richard R. Copley; Stefano Lise; John Broxholme; Karl A. Hudspith; Alexandra Kwasniewska; Wayne I. L. Davies; Mark W. Hankins; Emily R Packham; Penny Clouston; Anneke Seller; Andrew O.M. Wilkie; Jenny C. Taylor; Jiannis Ragoussis; Andrea H. Németh

620). Our pathogenicity interpretation pathway predicted 13 different mutations in eight different genes: PRKCG, TTBK2, SETX, SPTBN2, SACS, MRE11, KCNC3 and DARS2 of which nine were novel including one causing a newly described recessive ataxia syndrome. Genetic testing using targeted capture followed by next-generation sequencing was efficient, cost-effective, and enabled a molecular diagnosis in many refractory cases. A specific challenge of next-generation sequencing data is pathogenicity interpretation, but functional analysis confirmed the pathogenicity of novel variants showing that the pipeline was robust. Our results have broad implications for clinical neurology practice and the approach to diagnostic testing.


American Journal of Human Genetics | 2000

Autosomal Recessive Cerebellar Ataxia with Oculomotor Apraxia (Ataxia-Telangiectasia–Like Syndrome) Is Linked to Chromosome 9q34

Andrea H. Németh; Elena G. Bochukova; Eimear Dunne; Susan M. Huson; John S. Elston; Mohammed A. Hannan; Matthew Jackson; Cyril J. Chapman; A. Malcolm R. Taylor

Inherited retinal degeneration (IRD) is a common cause of visual impairment (prevalence ∼1/3500). There is considerable phenotype and genotype heterogeneity, making a specific diagnosis very difficult without molecular testing. We investigated targeted capture combined with next-generation sequencing using Nimblegen 12plex arrays and the Roche 454 sequencing platform to explore its potential for clinical diagnostics in two common types of IRD, retinitis pigmentosa and cone-rod dystrophy. 50 patients (36 unknowns and 14 positive controls) were screened, and pathogenic mutations were identified in 25% of patients in the unknown, with 53% in the early-onset cases. All patients with new mutations detected had an age of onset <21 years and 44% had a family history. Thirty-one percent of mutations detected were novel. A de novo mutation in rhodopsin was identified in one early-onset case without a family history. Bioinformatic pipelines were developed to identify likely pathogenic mutations and stringent criteria were used for assignment of pathogenicity. Analysis of sequencing metrics revealed significant variability in capture efficiency and depth of coverage. We conclude that targeted capture and next-generation sequencing are likely to be very useful in a diagnostic setting, but patients with earlier onset of disease are more likely to benefit from using this strategy. The mutation-detection rate suggests that many patients are likely to have mutations in novel genes.


Brain | 2008

Phenotypic heterogeneity and genetic modification of P102L inherited prion disease in an international series

T Webb; Mark Poulter; Jon Beck; James Uphill; Gary Adamson; Tracy Campbell; Jacqueline M. Linehan; Caroline Powell; Sebastian Brandner; S Pal; D Siddique; Jonathan D. F. Wadsworth; Susan Joiner; K. Alner; C. Petersen; S. Hampson; C. Rhymes; Colm Treacy; Elsdon Storey; Michael D. Geschwind; Andrea H. Németh; Stephen J. Wroe; John Collinge; Simon Mead

Ataxia with oculomotor apraxia (ataxia-telangiectasia-like syndrome [AOA]; MIM 208920) is an autosomal recessive disorder characterized by ataxia, oculomotor apraxia, and choreoathetosis. These neurological features resemble those of ataxia-telangiectasia (AT), but in AOA there are none of the extraneurological features of AT, such as immunodeficiency, neoplasia, chromosomal instability, or sensitivity to ionizing radiation. It is unclear whether these patients have a true disorder of chromosomal instability or a primary neurodegenerative syndrome, and it has not been possible to identify the defective gene in AOA, since the families have been too small for linkage analysis. We have identified a new family with AOA, and we show that the patients have no evidence of chromosomal instability or sensitivity to ionizing radiation, suggesting that AOA in this family is a true primary cerebellar ataxia. We have localized the disease gene, by linkage analysis and homozygosity mapping, to a 15.9-cM interval on chromosome 9q34. This work will ultimately allow the disease gene to be identified and its relevance to other types of autosomal recessive cerebellar ataxias to be determined.


American Journal of Human Genetics | 1997

Chorea-acanthocytosis: Genetic linkage to chromosome 9q21

Justin P. Rubio; Adrian Danek; Caroline Stone; Richard M. Chalmers; Nicholas W. Wood; Christine Verellen; Xavier Ferrer; Alessandro Malandrini; Gian Maria Fabrizi; Michela Manfredi; Jefferey Vance; Margaret A. Pericak-Vance; Robert H. Brown; Gabrielle Rudolf; Fabienne Picard; Elisa Alonso; Mitchell F. Brin; Andrea H. Németh; Martin Farrall; Anthony P. Monaco

The largest kindred with inherited prion disease P102L, historically Gerstmann-Sträussler-Scheinker syndrome, originates from central England, with émigrés now resident in various parts of the English-speaking world. We have collected data from 84 patients in the large UK kindred and numerous small unrelated pedigrees to investigate phenotypic heterogeneity and modifying factors. This collection represents by far the largest series of P102L patients so far reported. Microsatellite and genealogical analyses of eight separate European kindreds support multiple distinct mutational events at a cytosine-phosphate diester-guanidine dinucleotide mutation hot spot. All of the smaller P102L kindreds were linked to polymorphic human prion protein gene codon 129M and were not connected by genealogy or microsatellite haplotype background to the large kindred or each other. While many present with classical Gerstmann-Sträussler-Scheinker syndrome, a slowly progressive cerebellar ataxia with later onset cognitive impairment, there is remarkable heterogeneity. A subset of patients present with prominent cognitive and psychiatric features and some have met diagnostic criteria for sporadic Creutzfeldt-Jakob disease. We show that polymorphic human prion protein gene codon 129 modifies age at onset: the earliest eight clinical onsets were all MM homozygotes and overall age at onset was 7 years earlier for MM compared with MV heterozygotes (P = 0.02). Unexpectedly, apolipoprotein E4 carriers have a delayed age of onset by 10 years (P = 0.02). We found a preponderance of female patients compared with males (54 females versus 30 males, P = 0.01), which probably relates to ascertainment bias. However, these modifiers had no impact on a semi-quantitative pathological phenotype in 10 autopsied patients. These data allow an appreciation of the range of clinical phenotype, modern imaging and molecular investigation and should inform genetic counselling of at-risk individuals, with the identification of two genetic modifiers.


Neurogenetics | 1998

Clinical and molecular genetics of primary dystonias

Ulrich Müller; Daniela Steinberger; Andrea H. Németh

Chorea-acanthocytosis (CHAC) is a rare autosomal recessive disorder characterized by progressive neurodegeneration and unusual red-cell morphology (acanthocytosis), with onset in the third to fifth decade of life. Neurological impairment with acanthocytosis (neuroacanthocytosis) also is seen in abetalipoproteinemia and X-linked McLeod syndrome. Whereas the molecular etiology of McLeod syndrome has been defined (Ho et al. 1994), that of CHAC is still unknown. In the absence of cytogenetic rearrangements, we initiated a genomewide scan for linkage in 11 families, segregating for CHAC, who are of diverse geographical origin. We report here that the disease is linked, in all families, to a 6-cM region of chromosome 9q21 that is flanked by the recombinant markers GATA89a11 and D9S1843. A maximum two-point LOD score of 7.1 (theta = .00) for D9S1867 was achieved, and the linked region has been confirmed by homozygosity-by-descent, in offspring from inbred families. These findings provide strong evidence for the involvement of a single locus for CHAC and are the first step in positional cloning of the disease gene.


Brain | 2015

De novo point mutations in patients diagnosed with ataxic cerebral palsy.

Ricardo Parolin Schnekenberg; Emma M. Perkins; John W. Miller; Wayne L. Davies; Maria Cristina D’Adamo; Mauro Pessia; Katherine Fawcett; David Sims; Elodie Gillard; Karl Hudspith; Paul Skehel; Jonathan Williams; Mary O’Regan; Sandeep Jayawant; Rosalind Jefferson; Sarah Hughes; Andrea Lustenberger; Jiannis Ragoussis; Mandy Jackson; Stephen J. Tucker; Andrea H. Németh

ABSTRACT Primary dystonias are movement disorders with dystonia as a major symptom. They are frequently inherited as Mendelian traits. There are at least eight clinically distinct autosomal dominant and two X-linked recessive forms. In addition, pedigree analyses suggest the occurrence of an autosomal recessive variant. The clinical classification is increasingly being replaced by a genetic one. To date gene loci have been identified in at least six autosomal dominant forms, i.e., in idiopathic torsion dystonia (9q34), focal dystonia (18p), adult-onset idiopathic torsion dystonia of mixed type (8p21-q22), dopa-responsive dystonia (14q22.1-q22.2), and paroxysmal dystonic choreoathetosis (2q25-q33; 1p21-p13.3). Gene loci in the X-linked recessive forms have been assigned to Xq13.1 in the X-linked dystonia parkinsonism syndrome and to Xq22 in X-linked sensorineural deafness, dystonia, and mental retardation. The disease genes have been identified in two autosomal dominant forms and in one X-linked recessive form. Mutations in a gene coding for an ATP-binding protein were detected in idiopathic torsion dystonia (DYT1), and the GTP cyclohydrolase 1 gene is mutated in dopa-responsive dystonia (DYT5). In sensorineural deafness, dystonia, and mental retardation, mutations were found in the gene DDP coding for a polypeptide of unknown function. This article reviews the clinical and molecular genetics of primary dystonias, critically discusses present findings, and proposes referring to the known forms, most of which can be distinguished by genetic criteria, as dystonias 1–12.


Nature Genetics | 2015

Mutations in SLC25A46, encoding a UGO1-like protein, cause an optic atrophy spectrum disorder

Alexander J. Abrams; Robert B. Hufnagel; Adriana P. Rebelo; Claudia Zanna; Neville Patel; Michael Gonzalez; Ion J. Campeanu; Laurie B. Griffin; Saskia Groenewald; Alleene V. Strickland; Feifei Tao; Fiorella Speziani; Lisa Abreu; Rebecca Schüle; Leonardo Caporali; Chiara La Morgia; Alessandra Maresca; Rocco Liguori; Raffaele Lodi; Zubair M. Ahmed; Kristen L. Sund; Xinjian Wang; Laura A. Krueger; Yanyan Peng; Carlos E. Prada; Cynthia A. Prows; Elizabeth K. Schorry; Anthony Antonellis; Holly H. Zimmerman; Omar A. Abdul-Rahman

Cerebral palsy is commonly attributed to perinatal asphyxia. However, Schnekenberg et al. describe here four individuals with ataxic cerebral palsy likely due to de novo dominant mutations associated with increased paternal age. Therefore, patients with cerebral palsy should be investigated for genetic causes before the disorder is ascribed to asphyxia.

Collaboration


Dive into the Andrea H. Németh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eimear Dunne

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar

Helen Dawes

Oxford Brookes University

View shared research outputs
Top Co-Authors

Avatar

Jiannis Ragoussis

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar

Stefano Lise

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge