Andrea Hartwig
University of Bremen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrea Hartwig.
Biometals | 1995
Andrea Hartwig
While carcinogenic metal ions are mostly non-mutagenic in bacteria, different types of cellular damage have been observed in mammalian cells, which may account for their carcinogenic potential. Two modes of action seem to be predominant: the induction of oxidative DNA damage, best established for chromium compounds, and the interaction with DNA repair processes, leading to an enhancement of genotoxicity in combination with a variety of DNA damaging agents. In the case of Cd(II), Ni(II), Co(II), Pb(II) and As(III), DNA repair processes are disturbed at low, non-cytotoxic concentrations of the respective metal compounds. Even though different steps in DNA repair are affected by the diverse metals, one common mechanism might be the competition with essential metal ions.
Mutation Research\/genetic Toxicology | 1990
Andrea Hartwig; Regina Schlepegrell; Detmar Beyersmann
The data concerning the mutagenic, clastogenic and carcinogenic properties of inorganic lead compounds have been conflicting. To investigate whether the genotoxicity of lead is due to indirect effects such as interference with DNA-repair processes, the induction of mutations, sister-chromatid exchanges and strand breaks by lead ions alone as well as in combination with UV light as a standard mutagen were determined. Lead acetate alone does not induce DNA-strand breaks in HeLa cells or mutations at the HPRT locus and sister-chromatid exchanges in V79 Chinese hamster cells. However, at all endpoints tested, lead ions interfere with the processing of UV-induced DNA damage. They inhibit the closing of DNA-strand breaks after UV irradiation and enhance the number of UV-induced mutations and sister-chromatid exchanges, indicating an inhibition of DNA repair. These data point out the necessity to consider such indirect effects when assessing the genotoxicity of metal compounds. As possible mechanisms of repair inhibition we suggest either the interaction with repair enzymes such as polymerase or ligase or else the interaction with calcium-regulated processes, for example with calmodulin.
Toxicology and Applied Pharmacology | 1992
Detmar Beyersmann; Andrea Hartwig
Genetic and related effects of cobalt compounds are reviewed and discussed with respect to mechanisms. In prokaryotic assays, Co(II) salts generally are nonmutagenic. In Saccharomyces cerevisiae, CoCl2 is mutagenic to mitochondrial genes and weakly mutagenic or nonmutagenic to chromosomal genes. In plants, Co(II) salts induced gene mutations and chromosomal aberrations. In mammalian cells in vitro, Co(II) compounds caused DNA strand breaks, sister-chromatid exchanges and aneuploidy, but not chromosomal aberrations. In two cell lines, CoCl2 was weakly mutagenic. Interestingly, the poorly soluble compound CoS caused DNA strand breaks and morphological transformation of mammalian cell lines. In contrast to its weak clastogenic and mutagenic properties, cobalt(II) exerts pronounced antimutagenicity in bacteria and mostly comutagenic effects in mammalian cells. In Escherichia coli CoCl2 lowered the frequency of mutations induced by MNNG, uv or X rays. In Chinese hamster V79 cells, CoCl2 enhanced the mutagenicity and clastogenicity of uv light but not of gamma rays. Regarding direct genotoxic mechanisms, Co(II) induces the formation of reactive oxygen species when combined with hydrogen peroxide in cell-free systems. At high (i.e., millimolar) concentrations, Co(II) also decreases the fidelity of DNA synthesis. Regarding anti- and co-mutagenic mechanisms, evidence for the interference of Co(II) with DNA repair processes is discussed. These mechanisms are regarded as relevant for the risk assessment of human exposure to cobalt in combination with other agents.
Toxicology Letters | 1996
Andrea Hartwig; Heike Dally; Regina Schlepegrell
The measurement of oxidative DNA base modifications by different methods has received special attention in recent years. Here we describe a procedure to quantify DNA lesions recognized by the bacterial formamido-pyrimidine-DNA glycosylases (Fpg protein). These include 7,8-dihydro-8-oxoguanine (8-hydroxyguanine) as well as some other forms of imidazole ring-opened purines, which are converted into abasic sites and subsequently into DNA single-strand breaks by the associated endonuclease activity. The frequency of DNA strand breaks is determined by the alkaline unwinding technique. The procedure provides a fast and sensitive tool to assess the extent of spontaneous as well as induced oxidative DNA damage in mammalian cells.
Biological Trace Element Research | 1989
Andrea Hartwig; Detmar Beyersmann
Mutagenic and/or carcinogenic metal compounds may act directly by interaction with DNA and/or indirectly by interference with genetic control and repair mechanisms.In a previous report, we investigated the mutagenicity and comutagenicity of nickel (II) in the V79 Chinese hamster HGPRT-assay. Our present findings demonstrate that like nickel(II), chromium(VI) and cadmium(II) are also comutagenic with UV. Furthermore, there is only a weak concordance with comutagenic effects observed in bacterial test systems. In the case of nickel(II), there is a good correlation between comutagenicity and inhibition of DNA repair, as determined by using the nucleoid sedimentation technique with HeLa cells. This inhibition may occur via replacement of other divalent ions essential in repair enzymes.
Mutation Research-dna Repair | 1997
Ursula Kasten; L.H.F. Mullenders; Andrea Hartwig
Compounds of cobalt are carcinogenic to experimental animals, but the mutagenicity in mammalian cells in culture is rather weak. In contrast, cobalt(II) has been shown to inhibit the removal of DNA damage induced by UVC light, indicating an interference with cellular DNA repair processes. In the present study it was investigated which step of the nucleotide excision repair is affected by cobalt(II) and which mechanisms are involved. In this context, the effect of non-cytotoxic cobalt(II) concentrations on the induction as well as on the repair of UVC-induced DNA lesions has been examined in human fibroblasts by using the alkaline unwinding technique under various conditions. Cobalt(II) concentrations as low as 50 microM inhibit the incision as well as the polymerization step. In contrast, the ligation of repair patches is not disturbed by this metal. By combining the alkaline unwinding technique with the repair enzyme T4 endonuclease V, it is demonstrated that the incision at the site of cyclobutane pyrimidine dimers is affected at concentrations of 150 microM and higher. As one mode of action, the competition with essential magnesium(II) ions by cobalt(II) ions could be identified.
Toxicology Letters | 1994
Andrea Hartwig; Inès Krüger; Detmar Beyersmann
Even though nickel compounds are strong carcinogens, the underlying mechanism is still unclear. In contrast to their weak mutagenic potential, they enhance the cytotoxicity and genotoxicity of UV light, X-rays and cytostatic agents like cis-platinum, trans-platinum and mitomycin C. Studies in combination with UV light indicate an inhibition of DNA repair, presumably at the incision step of nucleotide excision repair. Possible reasons for repair inhibition are structural changes of the DNA or direct interactions with repair enzymes or proteins, possibly by competition with essential metal ions.
Mutation Research | 1991
Andrea Hartwig; Ronald D. Snyder; Regina Schlepegrell; Detmar Beyersmann
In bacterial test systems, Co(II) has been shown to be antimutagenic in combination with several chemical and physical agents. To investigate whether such modulations also apply to mammalian cells, the effect of Co(II) on UV-induced mutagenesis, sister-chromatid exchanges as well as DNA damage and its removal was determined. Co(II) itself is weakly mutagenic at the HPRT locus and increases the frequency of sister-chromatid exchanges. Additionally, at both endpoints the metal ions enhance the genotoxicity of UV light. To discriminate between an enhancement of DNA damage and an interference with repair processes, the number of pyrimidine cyclobutane dimers was determined by HPLC. While the induction of these DNA lesions is not affected by Co(II), their removal is inhibited at concentrations of 75 microM Co(II) and higher. Analysis of the kinetics of strand-break induction and closure after UV irradiation by nucleoid sedimentation reveals an accumulation of strand breaks in the presence of Co(II). This indicates that either the polymerization or the ligation step in excision repair is affected. Since similar interactions with the processing of UV-induced DNA damage have been observed with other carcinogenic and/or mutagenic metal ions, this appears to be a common mechanism of metal genotoxicity.
Toxicology Letters | 1998
Federica Calevro; Detmar Beyersmann; Andrea Hartwig
Compounds of cadmium(II) are well-known human and animal carcinogens. Furthermore, they affect development. growth and brain functions at subacute environmental concentrations in experimental animals. We investigated the potential of cadmium(II) to induce oxidative DNA damage in brain cell cultures obtained from larvae of Pleurodeles waltl. As indicators of DNA lesions typical of oxygen free radicals, we determined the frequencies of DNA strand breaks and of DNA base modifications recognized by the bacterial formamidopyrimidine-DNA glycosylase (Fpg protein). DNA strand breaks were generated in a dose-dependent manner at concentrations of 1 microM and greater. In contrast, no significant increase in Fpg-sensitive sites was observed under our experimental conditions. However, the repair of Fpg-sensitive DNA lesions induced by visible light was slightly diminished at 1 microM and inhibited completely at 10 microM of cadmium(II), while the closure of DNA strand breaks was not affected. Our results show that, although cadmium is not able to induce oxidative DNA base modifications in larval brain cells directly, its capability to generate DNA strand breaks and to interfere with the repair of oxidative DNA damage could explain the early life stage neurotoxicity of this metal.
Archives of Toxicology | 1998
Frank Iwitzki; Regina Schlepegrell; Uta Eichhorn; Bernd Kaina; Detmar Beyersmann; Andrea Hartwig
Abstract Nickel compounds are widespread carcinogens, and although only weakly mutagenic, interfere with nucleotide excision repair and with the repair of oxidative DNA base modifications. In the present study we investigated the effect of nickel(II) on the induction and repair of O6-methylguanine and N7-methylguanine after treatment with N-methyl-N-nitrosourea (MNU). We applied Chinese hamster ovary cells stably transfected with human O6-methylguanine-DNA methyltransferase (MGMT) cDNA (CHO-AT), and compared the results with the MGMT-deficient parental cell line. As determined by high-performance liquid chromatography/electrochemical detection (HPLC/ECD), there was a slight but mostly not significant reduction in the formation of both types of DNA lesions by MNU in the presence of nickel(II). Although nickel(II) did not markedly affect the repair of N7-methylguanine, it decreased the repair of O6-methylguanine in a dose-dependent manner, starting at concentrations as low as 50 μM. While the MGMT protein level was not altered in the presence of nickel(II), the MGMT activity was diminished as demonstrated in cell extracts form nickel-treated cells. This repair inhibition was accompanied by an increase in MNU-induced cytotoxicity in nickel-treated CHO-AT cells but not in MGMT-deficient control cells. There is strong evidence that O6-methylguanine is involved in tumour formation after exposure to alkylating agents. Thus, the finding that nickel(II) inhibits the repair of this lesion could be of major importance for risk assessment in case of combined exposures at work places and in the general environment.