Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea J. Bourdelais is active.

Publication


Featured researches published by Andrea J. Bourdelais.


Environmental Health Perspectives | 2005

Natural and derivative brevetoxins : Historical background, multiplicity, and effects

Daniel G. Baden; Andrea J. Bourdelais; Henry M. Jacocks; Sophie Michelliza; Jerome Naar

Symptoms consistent with inhalation toxicity have long been associated with Florida red tides, and various causal agents have been proposed. Research since 1981 has centered on a group of naturally occurring trans-fused cyclic polyether compounds called brevetoxins that are produced by a marine dinoflagellate known as Karenia brevis. Numerous individual brevetoxins have been identified from cultures as well as from natural bloom events. A spectrum of brevetoxin derivatives produced by chemical modification of the natural toxins has been prepared to examine the effects of functional group modification on physiologic activity. Certain structural features of natural and synthetic derivatives of brevetoxin appear to ascribe specific physiologic consequences to each toxin. Differential physiologic effects have been documented with many of the natural toxins and derivatives, reinforcing the hypothesis that metabolism or modification of toxin structures modulates both the specific toxicity (lethality on a per milligram basis) and potentially the molecular mechanism(s) of action. A series of naturally occurring fused-ring polyether compounds with fewer rings than brevetoxin, known as brevenals, exhibit antagonistic properties and counteract the effects of the brevetoxins in neuronal and pulmonary model systems. Taken together, the inhalation toxicity of Florida red tides would appear to depend on the amount of each toxin present, as well as on the spectrum of molecular activities elicited by each toxin. Toxicity in a bloom is diminished by the amount brevenal present.


PLOS ONE | 2008

Brevenal inhibits Pacific ciguatoxin-1B-induced neurosecretion from bovine chromaffin cells

César Mattei; Peter J. Wen; Truong D. Nguyen-Huu; Martha Alvarez; Evelyne Benoit; Andrea J. Bourdelais; Richard J. Lewis; Daniel G. Baden; Jordi Molgó; Frederic A. Meunier

Ciguatoxins and brevetoxins are neurotoxic cyclic polyether compounds produced by dinoflagellates, which are responsible for ciguatera and neurotoxic shellfish poisoning (NSP) respectively. Recently, brevenal, a natural compound was found to specifically inhibit brevetoxin action and to have a beneficial effect in NSP. Considering that brevetoxin and ciguatoxin specifically activate voltage-sensitive Na+ channels through the same binding site, brevenal has therefore a good potential for the treatment of ciguatera. Pacific ciguatoxin-1B (P-CTX-1B) activates voltage-sensitive Na+ channels and promotes an increase in neurotransmitter release believed to underpin the symptoms associated with ciguatera. However, the mechanism through which slow Na+ influx promotes neurosecretion is not fully understood. In the present study, we used chromaffin cells as a model to reconstitute the sequence of events culminating in ciguatoxin-evoked neurosecretion. We show that P-CTX-1B induces a tetrodotoxin-sensitive rise in intracellular Na+, closely followed by an increase in cytosolic Ca2+ responsible for promoting SNARE-dependent catecholamine secretion. Our results reveal that brevenal and β-naphtoyl-brevetoxin prevent P-CTX-1B secretagogue activity without affecting nicotine or barium-induced catecholamine secretion. Brevenal is therefore a potent inhibitor of ciguatoxin-induced neurotoxic effect and a potential treatment for ciguatera.


Cellular and Molecular Neurobiology | 2004

Brevenal is a natural inhibitor of brevetoxin action in sodium channel receptor binding assays

Andrea J. Bourdelais; Susan Campbell; Henry M. Jacocks; Jerome Naar; Jeffery L. C. Wright; Jigani Carsi; Daniel G. Baden

Abstract1. Florida red tides produce profound neurotoxicity that is evidenced by massive fish kills, neurotoxic shellfish poisoning, and respiratory distress. Red tides vary in potency, potency that is not totally governed by toxin concentration. The purpose of the study was to understand the variable potency of red tides by evaluating the potential for other natural pharmacological agents which could modulate or otherwise reduce the potency of these lethal environmental events.2. A synaptosome binding preparation with 3-fold higher specific brevetoxin binding was developed to detect small changes in toxin binding in the presence of potential antagonists. Rodent brain labeled in vitro with tritiated brevetoxin shows high specific binding in the cerebellum as evidenced by autoradiography. Synaptosome binding assays employing cerebellum-derived synaptosomes illustrate 3-fold increased specific binding.3. A new polyether natural product from Floridas red tide dinoflagellate Karenia brevis, has been isolated and characterized. Brevenal, as the nontoxic natural product is known, competes with tritiated brevetoxin for site 5 associated with the voltage-sensitive sodium channel (VSSC). Brevenal displacement of specific brevetoxin binding is purely competitive in nature.4. Brevenal, obtained from either laboratory cultures or field collections during a red tide, protects fish from the neurotoxic effects of brevetoxin exposure.5. Brevenal may serve as a model compound for the development of therapeutics to prevent or reverse intoxication in red tide exposures.


Environmental Health Perspectives | 2005

Effects of Inhaled Brevetoxins in Allergic Airways: Toxin–Allergen Interactions and Pharmacologic Intervention

William M. Abraham; Andrea J. Bourdelais; Ashfaq Ahmed; Irakli Serebriakov; Daniel G. Baden

During a Florida red tide, brevetoxins produced by the dinoflagellate Karenia brevis become aerosolized and cause airway symptoms in humans, especially in those with pre-existing airway disease (e.g., asthma). To understand these toxin-induced airway effects, we used sheep with airway hypersensitivity to Ascaris suum antigen as a surrogate for asthmatic patients and studied changes in pulmonary airflow resistance (RL) after inhalation challenge with lysed cultures of K. brevis (crude brevetoxins). Studies were done without and with clinically available drugs to determine which might prevent/reverse these effects. Crude brevetoxins (20 breaths at 100 pg/mL; n = 5) increased R L 128 ± 6% (mean ± SE) over baseline. This bronchoconstriction was significantly reduced (% inhibition) after pretreatment with the glucocorticosteroid budesonide (49%), the β 2 adrenergic agent albuterol (71%), the anticholinergic agent atropine (58%), and the histamine H1-antagonist diphenhydramine (47%). The protection afforded by atropine and diphenhydramine suggests that both cholinergic (vagal) and H1-mediated pathways contribute to the bronchoconstriction. The response to cutaneous toxin injection was also histamine mediated. Thus, the airway and skin data support the hypothesis that toxin activates mast cells in vivo. Albuterol given immediately after toxin challenge rapidly reversed the bronchoconstriction. Toxin inhalation increased airway kinins, and the response to inhaled toxin was enhanced after allergen challenge. Both factors could contribute to the increased sensitivity of asthmatic patients to toxin exposure. We conclude that K. brevis aerosols are potent airway constrictors. Clinically available drugs may be used to prevent or provide therapeutic relief for affected individuals.


Environmental Health Perspectives | 2005

Inhalation Toxicity of Brevetoxin 3 in Rats Exposed for Twenty-Two Days

Janet M. Benson; Thomas H. March; Jacob D. McDonald; Andrea P. Gomez; Mohan J. Sopori; Andrea J. Bourdelais; Jerome Naar; Julia Zaias; Gregory D. Bossart; Daniel G. Baden

Brevetoxins are potent neurotoxins produced by the marine dinoflagellate Karenia brevis. Exposure to brevetoxins may occur during a K. brevis red tide when the compounds become aerosolized by wind and surf. This study assessed possible adverse health effects associated with inhalation exposure to brevetoxin 3, one of the major brevetoxins produced by K. brevis and present in aerosols collected along beaches affected by red tide. Male F344 rats were exposed to brevetoxin 3 at 0, 37, and 237 μg/m3 by nose-only inhalation 2 hr/day, 5 days/week for up to 22 exposure days. Estimated deposited brevetoxin 3 doses were 0.9 and 5.8 μg/kg/day for the low-and high-dose groups, respectively. Body weights of the high-dose group were significantly below control values. There were no clinical signs of toxicity. Terminal body weights of both low- and high-dose-group rats were significantly below control values. Minimal alveolar macrophage hyperplasia was observed in three of six and six of six of the low- and high-dose groups, respectively. No histopathologic lesions were observed in the nose, brain, liver, or bone marrow of any group. Reticulocyte numbers in whole blood were significantly increased in the high-dose group, and mean corpuscular volume showed a significant decreasing trend with increasing exposure concentration. Humoral-mediated immunity was suppressed in brevetoxin-exposed rats as indicated by significant reduction in splenic plaque-forming cells in both low- and high-dose-group rats compared with controls. Results indicate that the immune system is the primary target for toxicity in rats after repeated inhalation exposure to relatively high concentrations of brevetoxins.


Toxicon | 2010

Variation in brevetoxin and brevenal content among clonal cultures of Karenia brevis may influence bloom toxicity.

Reagan M. Errera; Andrea J. Bourdelais; M.A. Drennan; E.B. Dodd; Darren W. Henrichs; Lisa Campbell

Karenia brevis, the major harmful algal (HA) species in the Gulf of Mexico, produces a suite of brevetoxins and brevenal, a nontoxic brevetoxin antagonist. K. brevis growth is reported to be optimum at oceanic conditions, yet blooms are most problematic in coastal waters. Differences in growth rate, total brevetoxin production, brevetoxin profiles and brevenal production were evaluated among eight K. brevis clones grown at salinities of 35 and 27, but otherwise identical conditions. All measured parameters varied significantly among clones and the individual responses to decreased salinity varied as well. At 27, growth rates of four clones increased (Wilson, TXB3, SP1 and SP2), but decreased in three others (TXB4, SP3 and NBK) as compared to 35. Total brevetoxin cellular concentration varied up to approximately ten-fold among clones. For most clones (5 of 8), no significant difference in total toxin production between salinity treatments was observed; however, there was a shift in brevetoxin profiles to a higher proportion of PbTx-1 vs. PbTx-2 (in 7 of 8 clones). Brevenal production decreased in the majority of the clones (6 of 8) when grown at a salinity of 27. Results suggest that K. brevis produces more PbTx-1 and less brevenal in lower salinity waters.


Toxicon | 2010

UV and Solar TiO2 Photocatalysis of Brevetoxins (PbTxs)

Urooj Khan; Nadia Benabderrazik; Andrea J. Bourdelais; Daniel G. Baden; Kathleen S. Rein; Piero R. Gardinali; Luis Arroyo; Kevin E. O'Shea

Karenia brevis, the harmful alga associated with red tide, produces brevetoxins (PbTxs). Exposure to these toxins can have a negative impact on marine wildlife and serious human health consequences. The elimination of PbTxs is critical to protect the marine environment and human health. TiO(2) photocatalysis under 350 nm and solar irradiation leads to significant degradation of PbTxs via first order kinetics. ELISA results demonstrate TiO(2) photocatalysis leads to a significant decrease in the bioactivity of PbTxs as a function of treatment time. Experiments conducted in the presence of synthetic seawater, humic material and a hydroxyl scavenger showed decreased degradation. PbTxs are highly hydrophobic and partition to organic microlayer on the ocean surface. Acetonitrile was employed to probe the influence of an organic media on the TiO(2) photocatalysis of PbTxs. Our results indicate TiO(2) photocatalysis may be applicable for the degradation of PbTxs.


Journal of Toxicology and Environmental Health | 2004

INHALATION TOXICITY OF BREVETOXIN 3 IN RATS EXPOSED FOR 5 DAYS

Janet M. Benson; Thomas H. March; Jacob D. McDonald; Mohan L. Sopori; JeanClare Seagrave; Andrea P. Gomez; Andrea J. Bourdelais; Jerome Naar; Julia Zaias; Gregory D. Bossart; Daniel G. Baden

Brevetoxins are potent neurotoxins produced by the marine dinoflagellate Karenia brevis. Exposure to brevetoxins may occur during a K. brevis red tide when the compounds become aerosolized by wind and surf. This study assesses possible adverse health effects associated with short-term inhalation exposure to brevetoxin 3. Male F344/Crl/Br rats were exposed to 500μg brevetoxin 3/m3 by nose-only inhalation for 0.5 or 2h/d for 5 consecutive days. Control rats were sham exposed for 2h to vehicle. Calculated deposited brevetoxin doses were 8.3 and 33μg/kg/d for the low- and high-dose groups, respectively. At the termination of exposures, only body weights of the high-dose group (Group B) were significantly below control values. By immunohistochemistry (IHC), small numbers of splenic and peribronchiolar lymphoid tissue macrophages stained positive for brevetoxin, while nasal mucosa, liver, and brain were IHC negative for brevetoxin. No gross or microscopic lesions were observed in any tissue examined. There was no biochemical evidence of cytotoxicity or inflammation in bronchoalveolar lavage fluid. Alveolar macrophages showed some evidence of activation following brevetoxin exposure. Humoral-mediated immunity was suppressed in brevetoxin-exposed rats as indicated by a >70% reduction in splenic plaque-forming cells in brevetoxin-exposed animals compared to controls. Results suggest that the immune system may be a target of toxicity following brevetoxin inhalation. Future studies will focus on identification of a no-effect level and mechanisms underlying brevetoxin-induced immune suppression.


Journal of Natural Products | 2010

Characterization of Tamulamides A and B, Polyethers Isolated from the Marine Dinoflagellate Karenia brevis

Laura T. Truxal; Andrea J. Bourdelais; Henry M. Jacocks; William M. Abraham; Daniel G. Baden

Florida red tides occur as the result of blooms of the marine dinoflagellate Karenia brevis. K. brevis is known to produce several families of fused polyether ladder compounds. The most notable compounds are the brevetoxins, potent neurotoxins that activate mammalian sodium channels. Additional fused polyether ladder compounds produced by K. brevis include brevenal, brevisin, and hemibrevetoxin B, all with varying affinities for the same binding site on voltage-sensitive sodium channels. The structure elucidation and biological activity of two additional fused polyether ladder compounds containing seven fused ether rings will be described in this paper. Tamulamide A (MW = 638.30) and tamulamide B (MW = 624.29) were isolated from K. brevis cultures, and their structures elucidated using a combination of NMR spectroscopy and high-resolution mass spectrometry. Tamulamides A and B were both found to compete with tritiated brevetoxin-3 ([(3)H]-PbTx-3) for its binding site on rat brain synaptosomes. However, unlike the brevetoxins, tamulamides A and B showed no toxicity to fish at doses up to 200 nM and did not cause significant bronchoconstriction in sheep pulmonary assays.


PLOS ONE | 2016

Fluorescent Receptor Binding Assay for Detecting Ciguatoxins in Fish

D. Ransom Hardison; William C. Holland; Jennifer R. McCall; Andrea J. Bourdelais; Daniel G. Baden; H. Taiana Darius; Mireille Chinain; Patricia A. Tester; Damian Shea; Harold A. Flores Quintana; James A. Morris; R. Wayne Litaker

Ciguatera fish poisoning is an illness suffered by > 50,000 people yearly after consumption of fish containing ciguatoxins (CTXs). One of the current methodologies to detect ciguatoxins in fish is a radiolabeled receptor binding assay (RBA(R)). However, the license requirements and regulations pertaining to radioisotope utilization can limit the applicability of the RBA(R) in certain labs. A fluorescence based receptor binding assay (RBA(F)) was developed to provide an alternative method of screening fish samples for CTXs in facilities not certified to use radioisotopes. The new assay is based on competition binding between CTXs and fluorescently labeled brevetoxin-2 (BODIPY®- PbTx-2) for voltage-gated sodium channel receptors at site 5 instead of a radiolabeled brevetoxin. Responses were linear in fish tissues spiked from 0.1 to 1.0 ppb with Pacific ciguatoxin-3C (P-CTX-3C) with a detection limit of 0.075 ppb. Carribean ciguatoxins were confirmed in Caribbean fish by LC-MS/MS analysis of the regional biomarker (C-CTX-1). Fish (N = 61) of six different species were screened using the RBA(F). Results for corresponding samples analyzed using the neuroblastoma cell-based assay (CBA-N2a) correlated well (R2 = 0.71) with those of the RBA(F), given the low levels of CTX present in positive fish. Data analyses also showed the resulting toxicity levels of P-CTX-3C equivalents determined by CBA-N2a were consistently lower than the RBA(F) affinities expressed as % binding equivalents, indicating that a given amount of toxin bound to the site 5 receptors translates into corresponding lower cytotoxicity. Consequently, the RBA(F), which takes approximately two hours to perform, provides a generous estimate relative to the widely used CBA-N2a which requires 2.5 days to complete. Other RBA(F) advantages include the long-term (> 5 years) stability of the BODIPY®- PbTx-2 and having similar results as the commonly used RBA(R). The RBA(F) is cost-effective, allows high sample throughput, and is well-suited for routine CTX monitoring programs.

Collaboration


Dive into the Andrea J. Bourdelais's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henry M. Jacocks

University of North Carolina at Wilmington

View shared research outputs
Top Co-Authors

Avatar

Jerome Naar

University of North Carolina at Wilmington

View shared research outputs
Top Co-Authors

Avatar

Janet M. Benson

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jennifer R. McCall

University of North Carolina at Wilmington

View shared research outputs
Top Co-Authors

Avatar

Carmelo R. Tomas

University of North Carolina at Wilmington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allan Goodman

University of North Carolina at Wilmington

View shared research outputs
Top Co-Authors

Avatar

Andrea P. Gomez

Lovelace Respiratory Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge