Andrea K. Townsend
Hamilton College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrea K. Townsend.
Proceedings of the Royal Society of London. Series B, Biological Sciences | 2010
Andrea K. Townsend; Anne B. Clark; Kevin J. McGowan; Andrew D. Miller; Elizabeth L. Buckles
Cooperatively breeding American crows (Corvus brachyrhynchos) suffer a severe disease-mediated survival cost from inbreeding, but the proximate mechanisms linking inbreeding to disease are unknown. Here, we examine indices of nestling body condition and innate immunocompetence in relationship to inbreeding and disease mortality. Using an estimate of microsatellite heterozygosity that predicts inbreeding in this population, we show that inbred crows were in relatively poor condition as nestlings, and that body condition index measured in the first 2–33 days after hatching, in addition to inbreeding index, predicted disease probability in the first 34 months of life. Inbred nestlings also mounted a weaker response along one axis of innate immunity: the proportion of bacteria killed in a microbiocidal assay increased as heterozygosity index increased. Relatively poor body condition and low innate immunocompetence are two mechanisms that might predispose inbred crows to ultimate disease mortality. A better understanding of condition-mediated inbreeding depression can guide efforts to minimize disease costs of inbreeding in small populations.
PLOS ONE | 2013
Andrea K. Townsend; T. Scott Sillett; Nina K. Lany; Sara A. Kaiser; Nicholas L. Rodenhouse; Michael S. Webster; Richard T. Holmes
Numerous studies have correlated the advancement of lay date in birds with warming climate trends, yet the fitness effects associated with this phenological response have been examined in only a small number of species. Most of these species–primarily insectivorous cavity nesters in Europe–exhibit fitness declines associated with increasing asynchrony with prey. Here, we use 25 years of demographic data, collected from 1986 to 2010, to examine the effects of spring temperature on breeding initiation date, double brooding, and annual fecundity in a Nearctic - Neotropical migratory songbird, the black-throated blue warbler (Setophaga caerulescens). Data were collected from birds breeding at the Hubbard Brook Experimental Forest, New Hampshire, USA, where long-term trends toward warmer springs have been recorded. We found that black-throated blue warblers initiated breeding earlier in warmer springs, that early breeders were more likely to attempt a second brood than those starting later in the season, and that double brooding and lay date were linked to higher annual fecundity. Accordingly, we found selection favored earlier breeding in most years. However, in contrast to studies of several other long-distance migratory species in Europe, this selection pressure was not stronger in warmer springs, indicating that these warblers were able to adjust mean lay date appropriately to substantial inter-annual variation in spring temperature. Our results suggest that this North American migratory songbird might not experience the same fecundity declines as songbirds that are unable to adjust their timing of breeding in pace with spring temperatures.
Molecular Ecology | 2007
Andrea K. Townsend; Christopher C. Rimmer; Steven C. Latta; Irby J. Lovette
The simple geographic structure of island systems often makes them tractable for studies of the patterns and processes of biological diversification. The Calyptophilus chat‐tanagers of Hispaniola are of general evolutionary interest because their multiple lineages might have arisen on a single island, of conservation concern because several isolated populations are nearly extinct, and taxonomically ambiguous because they have been variously lumped or split into one to four species. To explore the context of diversification of the seven extant Calyptophilus populations, we conducted a multilocus coalescent analysis based on sequences of mitochondrial ND2 and three nuclear intron loci. We then compared patterns of phylogeographic genetic variation with the morphological differences that distinguish these populations. Mitochondrial haplotypes formed two reciprocally monophyletic groups separated by a large magnitude of nucleotide divergence. Intron structure largely paralleled the geographic grouping pattern of the mitochondrial DNA (mtDNA), but these groups were only reciprocally monophyletic at one of the three introns. Also, the magnitude of between‐group divergence was much lower in the introns than mtDNA genealogies. Multilocus coalescent analyses inferred a nonzero divergence time between these two major geographic groups, but suggested that they have experienced a low level of gene flow. All four markers showed substantial allele sharing within each of the two groups, demonstrating that many now separated montane populations do not have long histories of isolation. Considered in concert, our multilocus phylogeographic reconstructions support the recognition of two species within the Calyptophilus complex, and raise the possibility that these taxa differentiated prior to the fusion of the two palaeo‐islands that form present‐day Hispaniola.
Applied and Environmental Microbiology | 2014
Allison M. Weis; Woutrina A. Miller; Barbara A. Byrne; Nadira Chouicha; Walter M. Boyce; Andrea K. Townsend
ABSTRACT Recent studies have suggested a potential role for wild birds in zoonotic transmission of Campylobacter jejuni, the leading cause of gastroenteritis in humans worldwide. In this study, we detected Campylobacter spp. in 66.9% (85/127) of free-ranging American crows (Corvus brachyrhyncos) sampled in the Sacramento Valley of California in 2012 and 2013. Biochemical testing and sequence analysis of 16S rRNA revealed that 93% of isolates (n = 70) were C. jejuni, with cytolethal distending toxin (CDT) and flagellin A genes detected by PCR in 20% and 46% of the C. jejuni isolates (n = 59), respectively. The high prevalence of C. jejuni, coupled with the occurrence of known virulence markers CDT and flagellin A, demonstrates that crows shed Campylobacter spp. in their feces that are potentially pathogenic to humans. Crows are abundant in urban, suburban, and agricultural settings, and thus further study to determine their role in zoonotic transmission of Campylobacter will inform public health.
Molecular Ecology | 2011
Nicholas D. Sly; Andrea K. Townsend; Christopher C. Rimmer; Jason M. Townsend; Steven C. Latta; Irby J. Lovette
With its large size, complex topography and high number of avian endemics, Hispaniola appears to be a likely candidate for the in situ speciation of its avifauna, despite the worldwide rarity of avian speciation within single islands. We used multilocus comparative phylogeography techniques to examine the pattern and history of divergence in 11 endemic birds representing potential within‐island speciation events. Haplotype and allele networks from mitochondrial ND2 and nuclear intron loci reveal a consistent pattern: phylogeographic divergence within or between closely related species is correlated with the likely distribution of ancient sea barriers that once divided Hispaniola into several smaller paleo‐islands. Coalescent and mitochondrial clock dating of divergences indicate species‐specific response to different geological events over the wide span of the island’s history. We found no evidence that ecological or topographical complexity generated diversity, either by creating open niches or by restricting long‐term gene flow. Thus, no true within‐island speciation appears to have occurred among the species sampled on Hispaniola. Divergence events predating the merging of Hispaniola’s paleo‐island blocks cannot be considered in situ divergence, and postmerging divergence in response to episodic island segmentation by marine flooding probably represents in situ vicariance or interarchipelago speciation by dispersal. Our work highlights the necessity of considering island geologic history while investigating the speciation–area relationship in birds and other taxa.
Animal Behaviour | 2009
Andrea K. Townsend; Anne B. Clark; Kevin J. McGowan; Irby J. Lovette
Understanding the benefits of cooperative breeding for group members of different social and demographic classes requires knowledge of their reproductive partitioning and genetic relatedness. From 2004-2007, we examined parentage as a function of relatedness and social interactions among members of 21 American crow (Corvus brachyrhynchos) family groups. Paired female breeders monopolized maternity of all offspring in their broods, whereas paired male breeders sired 82.7% of offspring, within-group auxiliary males sired 6.9% of offspring, and extragroup males sired 10.4% of offspring. Although adult females had fewer opportunities for direct reproduction as auxiliaries than males, they appeared to have earlier opportunities for independent breeding. These different opportunities for direct reproduction probably contributed to the male biased adult auxiliary sex ratio. Patterns of reproductive partitioning and conflict among males were most consistent with a synthetic reproductive skew model, in which auxiliaries struggled with breeders for a limited reproductive share, beyond which breeders could evict them. Counter to a frequent assumption of reproductive skew models, female breeders appeared to influence paternity, although their interests might have agreed with the interests of their paired males. Unusual among cooperative breeders, close inbreeding and incest occurred in this population. Incest avoidance between potential breeders did not significantly affect reproductive skew.
The American Naturalist | 2010
Andrea K. Townsend; Anne B. Clark; Kevin J. McGowan
The idea that extrapair paternity (EPP) in birds is part of a mixed reproductive strategy driven primarily by females is controversial. In cooperatively breeding American crows, we compared predictions of four female benefits hypotheses—the genetic diversity, good genes, genetic compatibility, and direct benefits hypotheses—to our predictions if EPP was primarily male driven. We found that genetically diverse broods were not more successful, extrapair young were not in better condition and did not have a higher survival probability, and, contrary to prediction, offspring sired by within‐group extrapair males were more inbred than within‐pair offspring. There was evidence of direct benefits, however: provisioning rate and number of surviving offspring were higher in groups containing within‐group extrapair sires. Females therefore derived no apparent benefits from extragroup extrapair males but both direct benefits and genetic costs from within‐group extrapair males. We suggest that males and females both influence the distribution of EPP in this system.
PLOS ONE | 2014
Andrea K. Townsend; Christopher M. Barker
Much attention has been paid to the impacts of plastics and other debris on marine organisms, but the effects of plastic on terrestrial organisms have been largely ignored. Detrimental effects of terrestrial plastic could be most pronounced in intensively human-modified landscapes (e.g., urban and agricultural areas), which are a source of much anthropogenic debris. Here, we examine the occurrence, types, landscape associations, and consequences of anthropogenic nest material in the American crow (Corvus brachyrhynchos), a North American species that breeds in both urban and agricultural landscapes. We monitored 195 nestlings in 106 nests across an urban and agricultural gradient in the Sacramento Valley, California, USA. We found that 85.2% of crow nests contained anthropogenic material, and 11 of 195 nestlings (5.6%) were entangled in their nests. The length of the material was greater in nests in agricultural territories than in urban territories, and the odds of entanglement increased 7.55 times for each meter of anthropogenic material in the nest. Fledging success was significantly lower for entangled than for unentangled nestlings. In all environments, particularly urban, agricultural, and marine, careful disposal of potential hazards (string, packing and hay bale twine, balloon ribbon, wire, fishing line) could reduce the occurrence of entanglement of nestling birds.
Applied and Environmental Microbiology | 2016
Allison M. Weis; Dylan B. Storey; Conor C. Taff; Andrea K. Townsend; Bihua C. Huang; Nguyet Kong; Kristin A. Clothier; Abigail Spinner; Barbara A. Byrne; Bart C. Weimer
ABSTRACT Campylobacter is the leading cause of human gastroenteritis worldwide. Wild birds, including American crows, are abundant in urban, suburban, and agricultural settings and are likely zoonotic vectors of Campylobacter. Their proximity to humans and livestock increases the potential spreading of Campylobacter via crows between the environment, livestock, and humans. However, no studies have definitively demonstrated that crows are a vector for pathogenic Campylobacter. We used genomics to evaluate the zoonotic and pathogenic potential of Campylobacter from crows to other animals with 184 isolates obtained from crows, chickens, cows, sheep, goats, humans, and nonhuman primates. Whole-genome analysis uncovered two distinct clades of Campylobacter jejuni genotypes; the first contained genotypes found only in crows, while a second genotype contained “generalist” genomes that were isolated from multiple host species, including isolates implicated in human disease, primate gastroenteritis, and livestock abortion. Two major β-lactamase genes were observed frequently in these genomes (oxa-184, 55%, and oxa-61, 29%), where oxa-184 was associated only with crows and oxa-61 was associated with generalists. Mutations in gyrA, indicative of fluoroquinolone resistance, were observed in 14% of the isolates. Tetracycline resistance (tetO) was present in 22% of the isolates, yet it occurred in 91% of the abortion isolates. Virulence genes were distributed throughout the genomes; however, cdtC alleles recapitulated the crow-only and generalist clades. A specific cdtC allele was associated with abortion in livestock and was concomitant with tetO. These findings indicate that crows harboring a generalist C. jejuni genotype may act as a vector for the zoonotic transmission of Campylobacter. IMPORTANCE This study examined the link between public health and the genomic variation of Campylobacter in relation to disease in humans, primates, and livestock. Use of large-scale whole-genome sequencing enabled population-level assessment to find new genes that are linked to livestock disease. With 184 Campylobacter genomes, we assessed virulence traits, antibiotic resistance susceptibility, and the potential for zoonotic transfer to observe that there is a “generalist” genotype that may move between host species.
Conservation Genetics | 2010
Nicholas D. Sly; Andrea K. Townsend; Christopher C. Rimmer; Jason M. Townsend; Steven C. Latta; Irby J. Lovette
The Gray-crowned Palm-Tanager (Phaenicophilus poliocephalus), sometimes considered conspecific with its more widespread congener P. palmarum, is restricted to Haiti’s Tiburon Peninsula, a biodiversity hotspot threatened by extensive habitat loss. We used a multilocus phylogeographic approach to identify evolutionarily distinct populations of Phaenicophilus. Mitochondrial haplotypes formed two reciprocally monophyletic groups separated by 5% uncorrected divergence. Genealogical patterns of differentiation at nuclear intron alleles were congruent with those of mtDNA, and the two species also differed in body size and shape. An ancient sea channel between the Tiburon Peninsula and mainland Haiti was likely a dispersal barrier that led to allopatric divergence, a hypothesis supported by our estimates of divergence times. Our results support the recognition of two Palm-Tanager species, confirming P. poliocephalus as Haiti’s only endemic bird species and underscoring the need to protect the Tiburon Peninsula’s single primary forest reserve.