Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea L. Bogomolni is active.

Publication


Featured researches published by Andrea L. Bogomolni.


Diseases of Aquatic Organisms | 2008

Victims or vectors: a survey of marine vertebrate zoonoses from coastal waters of the Northwest Atlantic

Andrea L. Bogomolni; Rebecca J. Gast; Julie C. Ellis; Mark R. Dennett; Katie R. Pugliares; Betty J. Lentell; Michael J. Moore

Surveillance of zoonotic pathogens in marine birds and mammals in the Northwest Atlantic revealed a diversity of zoonotic agents. We found amplicons to sequences from Brucella spp., Leptospira spp., Giardia spp. and Cryptosporidium spp. in both marine mammals and birds. Avian influenza was detected in a harp seal and a herring gull. Routine aerobic and anaerobic culture showed a broad range of bacteria resistant to multiple antibiotics. Of 1460 isolates, 797 were tested for resistance, and 468 were resistant to one or more anti-microbials. 73% (341/468) were resistant to 1-4 drugs and 27% (128/468) resistant to 5-13 drugs. The high prevalence of resistance suggests that many of these isolates could have been acquired from medical and agricultural sources and inter-microbial gene transfer. Combining birds and mammals, 45% (63/141) of stranded and 8% (2/26) of by-caught animals in this study exhibited histopathological and/or gross pathological findings associated with the presence of these pathogens. Our findings indicate that marine mammals and birds in the Northwest Atlantic are reservoirs for potentially zoonotic pathogens, which they may transmit to beachgoers, fishermen and wildlife health personnel. Conversely, zoonotic pathogens found in marine vertebrates may have been acquired via contamination of coastal waters by sewage, run-off and agricultural and medical waste. In either case these animals are not limited by political boundaries and are therefore important indicators of regional and global ocean health.


Diseases of Aquatic Organisms | 2008

Molecular characterization of Giardia intestinalis haplotypes in marine animals: variation and zoonotic potential

Erica Lasek-Nesselquist; Andrea L. Bogomolni; Rebecca J. Gast; David B. Mark Welch; Julie C. Ellis; Mitchell L. Sogin; Michael J. Moore

Giardia intestinalis is a microbial eukaryotic parasite that causes diarrheal disease in humans and other vertebrates worldwide. The negative effect on quality of life and economics caused by G. intestinalis may be increased by its potential status as a zoonosis, or a disease that can be transmitted from animals to humans. The zoonotic potential of G. intestinalis has been implied for over 2 decades, with human-infecting genotypes (belonging to the 2 major subgroups, Assemblages A and B) occurring in wildlife and domesticated animals. There are recent reports of G. intestinalis in shellfish, seals, sea lions and whales, suggesting that marine animals are also potential reservoirs of human disease. However, the prevalence, genetic diversity and effect of G. intestinalis in marine environments and the role that marine animals play in transmission of this parasite to humans are relatively unexplored. Here, we provide the first thorough molecular characterization of G. intestinalis in marine vertebrates. Using a multi-locus sequencing approach, we identify human-infecting G. intestinalis haplotypes of both Assemblages A and B in the fecal material of dolphins, porpoises, seals, herring gulls Larus argentatus, common eiders Somateria mollissima and a thresher shark Alopias vulpinus. Our results indicate that G. intestinalis is prevalent in marine ecosystems, and a wide range of marine hosts capable of harboring zoonotic forms of this parasite exist. The presence of G. intestinalis in marine ecosystems raises concerns about how this disease might be transmitted among different host species.


FEMS Microbiology Ecology | 2009

Occurrence and patterns of antibiotic resistance in vertebrates off the Northeastern United States coast

Julie M. Rose; Rebecca J. Gast; Andrea L. Bogomolni; Julie C. Ellis; Betty J. Lentell; Kathleen M. Touhey; Michael J. Moore

The prevalence of antibiotic-resistant bacteria in the marine environment is a growing concern, but the degree to which marine mammals, seabirds and fish harbor these organisms is not well documented. This project sought to identify the occurrence and patterns of antibiotic resistance in bacteria isolated from vertebrates of coastal waters in the northeastern United States. Four hundred and seventy-two isolates of clinical interest were tested for resistance to a suite of 16 antibiotics. Fifty-eight percent were resistant to at least one antibiotic, while 43% were resistant to multiple antibiotics. A multiple antibiotic resistance index value >or=0.2 was observed in 38% of the resistant pathogens, suggesting exposure of the animals to bacteria from significantly contaminated sites. Groups of antibiotics were identified for which bacterial resistance commonly co-occurred. Antibiotic resistance was more widespread in bacteria isolated from seabirds than marine mammals, and was more widespread in stranded or bycaught marine mammals than live marine mammals. Structuring of resistance patterns based on sample type (live/stranded/bycaught) but not animal group (mammal/bird/fish) was observed. These data indicate that antibiotic resistance is widespread in marine vertebrates, and they may be important reservoirs of antibiotic-resistant bacteria in the marine environment.


Veterinary Pathology | 2009

Gas Bubbles in Seals, Dolphins, and Porpoises Entangled and Drowned at Depth in Gillnets

Michael J. Moore; Andrea L. Bogomolni; Sophie Dennison; Greg Early; Michael M. Garner; B. A. Hayward; Betty J. Lentell; David S. Rotstein

Gas bubbles were found in 15 of 23 gillnet-drowned bycaught harp (Pagophilus groenlandicus), harbor (Phoca vitulina) and gray (Halichoerus grypus) seals, common (Delphinus delphis) and white-sided (Lagenorhyncus acutus) dolphins, and harbor porpoises (Phocaena phocaena) but in only 1 of 41 stranded marine mammals. Cases with minimal scavenging and bloating were chilled as practical and necropsied within 24 to 72 hours of collection. Bubbles were commonly visible grossly and histologically in bycaught cases. Affected tissues included lung, liver, heart, brain, skeletal muscle, gonad, lymph nodes, blood, intestine, pancreas, spleen, and eye. Computed tomography performed on 4 animals also identified gas bubbles in various tissues. Mean ± SD net lead line depths (m) were 92 ± 44 and ascent rates (ms-1) 0.3 ± 0.2 for affected animals and 76 ± 33 and 0.2 ± 0.1, respectively, for unaffected animals. The relatively good carcass condition of these cases, comparable to 2 stranded cases that showed no gas formation on computed tomography (even after 3 days of refrigeration in one case), along with the histologic absence of bacteria and autolytic changes, indicate that peri- or postmortem phase change of supersaturated blood and tissues is most likely. Studies have suggested that under some circumstances, diving mammals are routinely supersaturated and that these mammals presumably manage gas exchange and decompression anatomically and behaviorally. This study provides a unique illustration of such supersaturated tissues. We suggest that greater attention be paid to the radiology and pathology of bycatch mortality as a possible model to better understand gas bubble disease in marine mammals.


Diseases of Aquatic Organisms | 2010

Mortality trends of stranded marine mammals on Cape Cod and southeastern Massachusetts, USA, 2000 to 2006

Andrea L. Bogomolni; Katie R. Pugliares; Sarah M. Sharp; Kristen Patchett; Charles T. Harry; Jane M. LaRocque; Kathleen M. Touhey; Michael J. Moore

To understand the cause of death of 405 marine mammals stranded on Cape Cod and southeastern Massachusetts between 2000 and 2006, a system for coding final diagnosis was developed and categorized as (1) disease, (2) human interaction, (3) mass-stranded with no significant findings, (4) single-stranded with no significant findings, (5) rock and/or sand ingestion, (6) predatory attack, (7) failure to thrive or dependent calf or pup, or (8) other. The cause of death for 91 animals could not be determined. For the 314 animals that could be assigned a cause of death, gross and histological pathology results and ancillary testing indicated that disease was the leading cause of mortality in the region, affecting 116/314 (37%) of cases. Human interaction, including harassment, entanglement, and vessel collision, fatally affected 31/314 (10%) of all animals. Human interaction accounted for 13/29 (45%) of all determined gray seal Halichoerus grypus mortalities. Mass strandings were most likely to occur in northeastern Cape Cod Bay; 97/106 (92%) of mass stranded animals necropsied presented with no significant pathological findings. Mass strandings were the leading cause of death in 3 of the 4 small cetacean species: 46/67 (69%) of Atlantic white-sided dolphin Lagenorhynchus acutus, 15/21 (71%) of long-finned pilot whale Globicephala melas, and 33/54 (61%) of short-beaked common dolphin Delphinus delphis. These baseline data are critical for understanding marine mammal population health and mortality trends, which in turn have significant conservation and management implications. They not only afford a better retrospective analysis of strandings, but ultimately have application for improving current and future response to live animal stranding.


Ecohealth | 2008

Integrated Mercury Monitoring Program for Temperate Estuarine and Marine Ecosystems on the North American Atlantic Coast

David C. Evers; Robert P. Mason; Neil C. Kamman; Celia Y. Chen; Andrea L. Bogomolni; David L. Taylor; Chad R. Hammerschmidt; Stephen H. Jones; Neil M. Burgess; Kenneth Munney; Katharine C. Parsons

During the past century, anthropogenic activities have altered the distribution of mercury (Hg) on the earth’s surface. The impacts of such alterations to the natural cycle of Hg can be minimized through coordinated management, policy decisions, and legislative regulations. An ability to quantitatively measure environmental Hg loadings and spatiotemporal trends of their fate in the environment is critical for science-based decision making. Here, we outline a Hg monitoring program for temperate estuarine and marine ecosystems on the Atlantic Coast of North America. This framework follows a similar, previously developed plan for freshwater and terrestrial ecosystems in the U.S. Methylmercury (MeHg) is the toxicologically relevant form of Hg, and its ability to bioaccumulate in organisms and biomagnify in food webs depends on numerous biological and physicochemical factors that affect its production, transport, and fate. Therefore, multiple indicators are needed to fully characterize potential changes of Hg loadings in the environment and MeHg bioaccumulation through the different marine food webs. In addition to a description of how to monitor environmental Hg loads for air, sediment, and water, we outline a species-specific matrix of biotic indicators that include shellfish and other invertebrates, fish, birds and mammals. Such a Hg monitoring template is applicable to coastal areas across the Northern Hemisphere and is transferable to arctic and tropical marine ecosystems. We believe that a comprehensive approach provides an ability to best detect spatiotemporal Hg trends for both human and ecological health, and concurrently identify food webs and species at greatest risk to MeHg toxicity.


Archive | 2007

Marine Mammal Necropsy: An Introductory Guide for Stranding Responders and Field Biologists

Katie R. Pugliares; Andrea L. Bogomolni; Kathleen M. Touhey; Sarah M. Herzig; Charles T. Harry; Michael J. Moore

Funding was provided by the National Oceanic and Atmospheric Administration under Cooperative Grant No. NA05NMF4391165.


oceans conference | 2006

Fatally entangled right whales can die extremely slowly

Michael J. Moore; Andrea L. Bogomolni; Robert Bowman; Philip K. Hamilton; Charles T. Harry; Amy R. Knowlton; Scott Landry; David S. Rotstein; Kathleen M. Touhey

Unlike smaller marine mammals that lack the mass and power to break free from serious entanglements in fixed fishing gear, right whales can do so, but they are not always rope free. The remaining rope can gradually constrict one or more body parts and the resulting debilitation and ultimate death can take many months. Thus the practices that lead to these mortalities need to be viewed not only as a conflict between the cultural and socioeconomic value of a fishery versus a potential species extinction process, but also in terms of an extreme animal welfare issue


PLOS ONE | 2013

Compositional discrimination of decompression and decomposition gas bubbles in bycaught seals and dolphins

Yara Bernaldo de Quirós; Jeffrey S. Seewald; Sean P. Sylva; Bill Greer; Misty E. Niemeyer; Andrea L. Bogomolni; Michael J. Moore

Gas bubbles in marine mammals entangled and drowned in gillnets have been previously described by computed tomography, gross examination and histopathology. The absence of bacteria or autolytic changes in the tissues of those animals suggested that the gas was produced peri- or post-mortem by a fast decompression, probably by quickly hauling animals entangled in the net at depth to the surface. Gas composition analysis and gas scoring are two new diagnostic tools available to distinguish gas embolisms from putrefaction gases. With this goal, these methods have been successfully applied to pathological studies of marine mammals. In this study, we characterized the flux and composition of the gas bubbles from bycaught marine mammals in anchored sink gillnets and bottom otter trawls. We compared these data with marine mammals stranded on Cape Cod, MA, USA. Fresh animals or with moderate decomposition (decomposition scores of 2 and 3) were prioritized. Results showed that bycaught animals presented with significantly higher gas scores than stranded animals. Gas composition analyses indicate that gas was formed by decompression, confirming the decompression hypothesis.


oceans conference | 2006

Emerging Zoonoses in Marine Mammals and Seabirds of the Northeast U.S.

Andrea L. Bogomolni; Julie C. Ellis; Rebecca J. Gast; B. Harris; Mark A. Pokras; Kathleen M. Touhey; Michael J. Moore

In the Northeast United States, marine vertebrates come into contact with each other and with humans through a variety of mechanisms which allow for the transfer of pathogens from one taxa to another. Though there are many ways in which humans come into contact with infectious agents, there is an inadequate understanding of the prevalence of clinical and sub-clinical zoonotic agents in the marine vertebrates of the Northeast United States. We are strengthening our understanding of the issue by targeting marine mammals and seabirds of New England and screening normal and diseased individuals of this ecosystem to establish a baseline prevalence of zoonotic agents in this ecosystem. Samples from stranded, bycaught and wild marine mammals and seabirds have been found to be positive for our screened pathogens. Most notable are the diseases found in bycaught marine mammals as well as wild caught individuals. Our current focus is specifically on influenza A and B, brucellosis, leptospirosis, Giardia and Cryptosporidium. Samples for virology, bacterial screening and molecular screening are being archived and analyzed as practical. Our goal is to create an optimized PCR-based molecular detection protocol for the above agents

Collaboration


Dive into the Andrea L. Bogomolni's collaboration.

Top Co-Authors

Avatar

Michael J. Moore

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rebecca J. Gast

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Gordon T. Waring

National Marine Fisheries Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Milton Levin

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Betty J. Lentell

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Charles T. Harry

International Fund for Animal Welfare

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge