Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea L. Hevener is active.

Publication


Featured researches published by Andrea L. Hevener.


Nature Medicine | 2005

IKK-beta links inflammation to obesity-induced insulin resistance.

Melek C. Arkan; Andrea L. Hevener; Florian R. Greten; Shin Maeda; Zhi-Wei Li; Jeffrey M. Long; Anthony Wynshaw-Boris; Giuseppe Poli; Jerrold M. Olefsky; Michael Karin

Inflammation may underlie the metabolic disorders of insulin resistance and type 2 diabetes. IκB kinase β (IKK-β, encoded by Ikbkb) is a central coordinator of inflammatory responses through activation of NF-κB. To understand the role of IKK-β in insulin resistance, we used mice lacking this enzyme in hepatocytes (IkbkbΔhep) or myeloid cells (IkbkbΔmye). IkbkbΔhep mice retain liver insulin responsiveness, but develop insulin resistance in muscle and fat in response to high fat diet, obesity or aging. In contrast, IkbkbΔmye mice retain global insulin sensitivity and are protected from insulin resistance. Thus, IKK-β acts locally in liver and systemically in myeloid cells, where NF-κB activation induces inflammatory mediators that cause insulin resistance. These findings demonstrate the importance of liver cell IKK-β in hepatic insulin resistance and the central role of myeloid cells in development of systemic insulin resistance. We suggest that inhibition of IKK-β, especially in myeloid cells, may be used to treat insulin resistance.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle.

Weimin He; Yaacov Barak; Andrea L. Hevener; Peter Olson; Debbie Liao; Jamie Le; Michael C. Nelson; Estelita S. Ong; Jerrold M. Olefsky; Ronald M. Evans

Syndrome X, typified by obesity, insulin resistance (IR), dyslipidemia, and other metabolic abnormalities, is responsive to antidiabetic thiazolidinediones (TZDs). Peroxisome proliferator-activated receptor (PPAR) γ, a target of TZDs, is expressed abundantly in adipocytes, suggesting an important role for this tissue in the etiology and treatment of IR. Targeted deletion of PPARγ in adipose tissue resulted in marked adipocyte hypocellularity and hypertrophy, elevated levels of plasma free fatty acids and triglyceride, and decreased levels of plasma leptin and ACRP30. In addition, increased hepatic glucogenesis and IR were observed. Despite these defects, blood glucose, glucose and insulin tolerance, and insulin-stimulated muscle glucose uptake were all comparable to those of control mice. However, targeted mice were significantly more susceptible to high-fat diet-induced steatosis, hyperinsulinemia, and IR. Surprisingly, TZD treatment effectively reversed liver IR, whereas it failed to lower plasma free fatty acids. These results suggest that syndrome X may be comprised of separable PPARγ-dependent components whose origins and therapeutic sites may reside in distinct tissues.


Nature Medicine | 2003

Muscle-specific Pparg deletion causes insulin resistance

Andrea L. Hevener; Weimin He; Yaacov Barak; Jamie Le; Gautam Bandyopadhyay; Peter Olson; Jason J. Wilkes; Ronald M. Evans; Jerrold M. Olefsky

Thiazolidinediones (TZDs) are insulin-sensitizing drugs and are potent agonists of the nuclear peroxisome proliferator-activated receptor-γ (PPAR-γ). Although muscle is the major organ responsible for insulin-stimulated glucose disposal, PPAR-γ is more highly expressed in adipose tissue than in muscle. To address this issue, we used the Cre-loxP system to knock out Pparg, the gene encoding PPAR-γ, in mouse skeletal muscle. As early as 4 months of age, mice with targeted disruption of PPAR-γ in muscle showed glucose intolerance and progressive insulin resistance. Using the hyperinsulinemic-euglycemic clamp technique, the in vivo insulin-stimulated glucose disposal rate (IS-GDR) was reduced by ∼80% and was unchanged by 3 weeks of TZD treatment. These effects reveal a crucial role for muscle PPAR-γ in the maintenance of skeletal muscle insulin action, the etiology of insulin resistance and the action of TZDs.


Journal of Clinical Investigation | 2007

Macrophage PPARγ is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones

Andrea L. Hevener; Jerrold M. Olefsky; Donna Reichart; M. T. Audrey Nguyen; Gautam Bandyopadyhay; Ho-Yin Leung; Matthew J. Watt; Christopher Benner; Mark A. Febbraio; Anh-Khoi Nguyen; Brian Folian; Shankar Subramaniam; Frank J. Gonzalez; Christopher K. Glass; Mercedes Ricote

PPAR gamma is required for fat cell development and is the molecular target of antidiabetic thiazolidinediones (TZDs), which exert insulin-sensitizing effects in adipose tissue, skeletal muscle, and liver. Unexpectedly, we found that inactivation of PPAR gamma in macrophages results in the development of significant glucose intolerance plus skeletal muscle and hepatic insulin resistance in lean mice fed a normal diet. This phenotype was associated with increased expression of inflammatory markers and impaired insulin signaling in adipose tissue, muscle, and liver. PPAR gamma-deficient macrophages secreted elevated levels of factors that impair insulin responsiveness in muscle cells in a manner that was enhanced by exposure to FFAs. Consistent with this, the relative degree of insulin resistance became more severe in mice lacking macrophage PPAR gamma following high-fat feeding, and these mice were only partially responsive to TZD treatment. These findings reveal an essential role of PPAR gamma in macrophages for the maintenance of whole-body insulin action and in mediating the antidiabetic actions of TZDs.


Proceedings of the National Academy of Sciences of the United States of America | 2008

HSP72 protects against obesity-induced insulin resistance

Jason Chung; Anh Nguyen; Darren C. Henstridge; Anna G. Holmes; M. H. Stanley Chan; Jose L. Mesa; Graeme I. Lancaster; Robert J. Southgate; Clinton R. Bruce; S. Duffy; Ibolya Horváth; Ruben Mestril; Matthew J. Watt; Philip L. Hooper; Bronwyn A. Kingwell; László Vígh; Andrea L. Hevener; Mark A. Febbraio

Patients with type 2 diabetes have reduced gene expression of heat shock protein (HSP) 72, which correlates with reduced insulin sensitivity. Heat therapy, which activates HSP72, improves clinical parameters in these patients. Activation of several inflammatory signaling proteins such as c-jun amino terminal kinase (JNK), inhibitor of κB kinase, and tumor necrosis factor-α, can induce insulin resistance, but HSP 72 can block the induction of these molecules in vitro. Accordingly, we examined whether activation of HSP72 can protect against the development of insulin resistance. First, we show that obese, insulin resistant humans have reduced HSP72 protein expression and increased JNK phosphorylation in skeletal muscle. We next used heat shock therapy, transgenic overexpression, and pharmacologic means to overexpress HSP72 either specifically in skeletal muscle or globally in mice. Herein, we show that regardless of the means used to achieve an elevation in HSP72 protein, protection against diet- or obesity-induced hyperglycemia, hyperinsulinemia, glucose intolerance, and insulin resistance was observed. This protection was tightly associated with the prevention of JNK phosphorylation. These findings identify an essential role for HSP72 in blocking inflammation and preventing insulin resistance in the context of genetic obesity or high-fat feeding.


Endocrine Reviews | 2013

The Role of Estrogens in Control of Energy Balance and Glucose Homeostasis

Franck Mauvais-Jarvis; Deborah J. Clegg; Andrea L. Hevener

Estrogens play a fundamental role in the physiology of the reproductive, cardiovascular, skeletal, and central nervous systems. In this report, we review the literature in both rodents and humans on the role of estrogens and their receptors in the control of energy homeostasis and glucose metabolism in health and metabolic diseases. Estrogen actions in hypothalamic nuclei differentially control food intake, energy expenditure, and white adipose tissue distribution. Estrogen actions in skeletal muscle, liver, adipose tissue, and immune cells are involved in insulin sensitivity as well as prevention of lipid accumulation and inflammation. Estrogen actions in pancreatic islet β-cells also regulate insulin secretion, nutrient homeostasis, and survival. Estrogen deficiency promotes metabolic dysfunction predisposing to obesity, the metabolic syndrome, and type 2 diabetes. We also discuss the effect of selective estrogen receptor modulators on metabolic disorders.


PLOS ONE | 2010

Sarcopenia Exacerbates Obesity-Associated Insulin Resistance and Dysglycemia: Findings from the National Health and Nutrition Examination Survey III

Preethi Srikanthan; Andrea L. Hevener; Arun S. Karlamangla

Background Sarcopenia often co-exists with obesity, and may have additive effects on insulin resistance. Sarcopenic obese individuals could be at increased risk for type 2 diabetes. We performed a study to determine whether sarcopenia is associated with impairment in insulin sensitivity and glucose homeostasis in obese and non-obese individuals. Methodology We performed a cross-sectional analysis of National Health and Nutrition Examination Survey III data utilizing subjects of 20 years or older, non-pregnant (N = 14,528). Sarcopenia was identified from bioelectrical impedance measurement of muscle mass. Obesity was identified from body mass index. Outcomes were homeostasis model assessment of insulin resistance (HOMA IR), glycosylated hemoglobin level (HbA1C), and prevalence of pre-diabetes (6.0≤ HbA1C<6.5 and not on medication) and type 2 diabetes. Covariates in multiple regression were age, educational level, ethnicity and sex. Principal Findings Sarcopenia was associated with insulin resistance in non-obese (HOMA IR ratio 1.39, 95% confidence interval (CI) 1.26 to 1.52) and obese individuals (HOMA-IR ratio 1.16, 95% CI 1.12 to 1.18). Sarcopenia was associated with dysglycemia in obese individuals (HbA1C ratio 1.021, 95% CI 1.011 to 1.043) but not in non-obese individuals. Associations were stronger in those under 60 years of age. We acknowledge that the cross-sectional study design limits our ability to draw causal inferences. Conclusions Sarcopenia, independent of obesity, is associated with adverse glucose metabolism, and the association is strongest in individuals under 60 years of age, which suggests that low muscle mass may be an early predictor of diabetes susceptibility. Given the increasing prevalence of obesity, further research is urgently needed to develop interventions to prevent sarcopenic obesity and its metabolic consequences.


Comprehensive Physiology | 2013

Metabolic syndrome and insulin resistance: underlying causes and modification by exercise training.

Christian K. Roberts; Andrea L. Hevener; R. James Barnard

Metabolic syndrome (MS) is a collection of cardiometabolic risk factors that includes obesity, insulin resistance, hypertension, and dyslipidemia. Although there has been significant debate regarding the criteria and concept of the syndrome, this clustering of risk factors is unequivocally linked to an increased risk of developing type 2 diabetes and cardiovascular disease. Regardless of the true definition, based on current population estimates, nearly 100 million have MS. It is often characterized by insulin resistance, which some have suggested is a major underpinning link between physical inactivity and MS. The purpose of this review is to: (i) provide an overview of the history, causes and clinical aspects of MS, (ii) review the molecular mechanisms of insulin action and the causes of insulin resistance, and (iii) discuss the epidemiological and intervention data on the effects of exercise on MS and insulin sensitivity.


American Journal of Physiology-endocrinology and Metabolism | 2010

Impaired oxidative metabolism and inflammation are associated with insulin resistance in ERα-deficient mice

Vicent Ribas; M. T. Audrey Nguyen; Darren C. Henstridge; Anh-Khoi Nguyen; Simon W. Beaven; Matthew J. Watt; Andrea L. Hevener

Impaired estrogen action is associated with the metabolic syndrome in humans. We sought to determine whether impaired estrogen action in female C57Bl6 mice, produced by whole body Esr1 ablation, could recapitulate aspects of this syndrome, including inflammation, insulin resistance, and obesity. Indeed, we found that global knockout (KO) of the estrogen receptor (ER)alpha leads to reduced oxygen uptake and caloric expenditure compared with wild-type (WT) mice. In addition, fasting insulin, leptin, and PAI-1 levels were markedly elevated, whereas adiponectin levels were reduced in normal chow-fed KO. Furthermore, ERalpha-KO mice exhibited impaired glucose tolerance and marked skeletal muscle insulin resistance that was accompanied by the accumulation of bioactive lipid intermediates, inflammation, and diminished PPARalpha, PPARdelta, and UCP2 transcript levels. Although the relative glucose intolerance and insulin resistance phenotype in KO mice became more severe with high-fat feeding, WT mice were refractory to these dietary-induced effects, and this protection coincided with a marked increase in circulating adiponectin and heat shock protein 72 levels in muscle, liver, and fat. These data indicate that ERalpha is critical for the maintenance of whole body insulin action and protection against tissue inflammation during both normal chow and high-fat feeding.


Cell Metabolism | 2009

Pigment Epithelium-Derived Factor Contributes to Insulin Resistance in Obesity

Seamus Crowe; Lindsay E. Wu; Catherine Economou; Sarah M. Turpin; Maria Matzaris; Kyle L. Hoehn; Andrea L. Hevener; David E. James; Elia J. Duh; Matthew J. Watt

Obesity is a major risk factor for insulin resistance; however, the factors linking these disorders are not well defined. Herein, we show that the noninhibitory serine protease inhibitor, pigment epithelium-derived factor (PEDF), plays a causal role in insulin resistance. Adipocyte PEDF expression and serum levels are elevated in several rodent models of obesity and reduced upon weight loss and insulin sensitization. Lean mice injected with recombinant PEDF exhibited reduced insulin sensitivity during hyperinsulinemic-euglycemic clamps. Acute PEDF administration activated the proinflammatory serine/threonine kinases c-Jun terminal kinase and extracellular regulated kinase in both muscle and liver, which corresponded with reduced insulin signal transduction. Prolonged PEDF administration stimulated adipose tissue lipolysis, resulted in ectopic lipid deposition, and reduced insulin sensitivity, while neutralizing PEDF in obese mice enhanced insulin sensitivity. Overall, these results identify a causal role for PEDF in obesity-induced insulin resistance.

Collaboration


Dive into the Andrea L. Hevener's collaboration.

Top Co-Authors

Avatar

Brian G. Drew

West Los Angeles College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhenqi Zhou

University of California

View shared research outputs
Top Co-Authors

Avatar

Mark A. Febbraio

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Peter Tontonoz

University of California

View shared research outputs
Top Co-Authors

Avatar

Karen Reue

University of California

View shared research outputs
Top Co-Authors

Avatar

Vicent Ribas

University of California

View shared research outputs
Top Co-Authors

Avatar

Laurent Vergnes

Semel Institute for Neuroscience and Human Behavior

View shared research outputs
Top Co-Authors

Avatar

Darren C. Henstridge

Semel Institute for Neuroscience and Human Behavior

View shared research outputs
Top Co-Authors

Avatar

Donna Reichart

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge