Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea L. J. Marschall is active.

Publication


Featured researches published by Andrea L. J. Marschall.


mAbs | 2011

Targeting antibodies to the cytoplasm

Andrea L. J. Marschall; André Frenzel; Thomas Schirrmann; Manuela Schüngel; Stefan Dübel

A growing number of research consortia are now focused on generating antibodies and recombinant antibody fragments that target the human proteome. A particularly valuable application for these binding molecules would be their use inside a living cell, e.g., for imaging or functional intervention. Animal-derived antibodies must be brought into the cell through the membrane, whereas the availability of the antibody genes from phage display systems allows intracellular expression. Here, the various technologies to target intracellular proteins with antibodies are reviewed.


Immunity | 2015

The Translocon Protein Sec61 Mediates Antigen Transport from Endosomes in the Cytosol for Cross-Presentation to CD8+ T Cells

Matthias Zehner; Andrea L. J. Marschall; Erik Bos; Jan-Gero Schloetel; Christoph Kreer; Dagmar Fehrenschild; Andreas Limmer; Ferry Ossendorp; Thorsten Lang; Abraham J. Koster; Stefan Dübel; Sven Burgdorf

The molecular mechanisms regulating antigen translocation into the cytosol for cross-presentation are under controversial debate, mainly because direct data is lacking. Here, we have provided direct evidence that the activity of the endoplasmic reticulum (ER) translocon protein Sec61 is essential for endosome-to-cytosol translocation. We generated a Sec61-specific intrabody, a crucial tool that trapped Sec61 in the ER and prevented its recruitment into endosomes without influencing Sec61 activity and antigen presentation in the ER. Expression of this ER intrabody inhibited antigen translocation and cross-presentation, demonstrating that endosomal Sec61 indeed mediates antigen transport across endosomal membranes. Moreover, we showed that the recruitment of Sec61 toward endosomes, and hence antigen translocation and cross-presentation, is dependent on dendritic cell activation by Toll-like receptor (TLR) ligands. These data shed light on a long-lasting question regarding antigen cross-presentation and point out a role of the ER-associated degradation machinery in compartments distinct from the ER.


mAbs | 2015

Specific in vivo knockdown of protein function by intrabodies

Andrea L. J. Marschall; Stefan Dübel; Thomas Böldicke

Intracellular antibodies (intrabodies) are recombinant antibody fragments that bind to target proteins expressed inside of the same living cell producing the antibodies. The molecules are commonly used to study the function of the target proteins (i.e., their antigens). The intrabody technology is an attractive alternative to the generation of gene-targeted knockout animals, and complements knockdown techniques such as RNAi, miRNA and small molecule inhibitors, by-passing various limitations and disadvantages of these methods. The advantages of intrabodies include very high specificity for the target, the possibility to knock down several protein isoforms by one intrabody and targeting of specific splice variants or even post-translational modifications. Different types of intrabodies must be designed to target proteins at different locations, typically either in the cytoplasm, in the nucleus or in the endoplasmic reticulum (ER). Most straightforward is the use of intrabodies retained in the ER (ER intrabodies) to knock down the function of proteins passing the ER, which disturbs the function of members of the membrane or plasma proteomes. More effort is needed to functionally knock down cytoplasmic or nuclear proteins because in this case antibodies need to provide an inhibitory effect and must be able to fold in the reducing milieu of the cytoplasm. In this review, we present a broad overview of intrabody technology, as well as applications both of ER and cytoplasmic intrabodies, which have yielded valuable insights in the biology of many targets relevant for drug development, including α-synuclein, TAU, BCR-ABL, ErbB-2, EGFR, HIV gp120, CCR5, IL-2, IL-6, β-amyloid protein and p75NTR. Strategies for the generation of intrabodies and various designs of their applications are also reviewed.


mAbs | 2014

Delivery of antibodies to the cytosol: Debunking the myths

Andrea L. J. Marschall; Congcong Zhang; André Frenzel; Thomas Schirrmann; Michael Hust; Franck Perez; Stefan Dübel

The use of antibodies to target their antigens in living cells is a powerful analytical tool for cell biology research. Not only can molecules be localized and visualized in living cells, but interference with cellular processes by antibodies may allow functional analysis down to the level of individual post-translational modifications and splice variants, which is not possible with genetic or RNA-based methods. To utilize the vast resource of available antibodies, an efficient system to deliver them into the cytosol from the outside is needed. Numerous strategies have been proposed, but the most robust and widely applicable procedure still remains to be identified, since a quantitative ranking of the efficiencies has not yet been done. To achieve this, we developed a novel efficiency evaluation method for antibody delivery based on a fusion protein consisting of a human IgG1 Fc and the recombination enzyme Cre (Fc-Cre). Applied to suitable GFP reporter cells, it allows the important distinction between proteins trapped in endosomes and those delivered to the cytosol. Further, it ensures viability of positive cells and is unsusceptible to fixation artifacts and misinterpretation of cellular localization in microscopy and flow cytometry. Very low cytoplasmic delivery efficiencies were found for various profection reagents and membrane penetrating peptides, leaving electroporation as the only practically useful delivery method for antibodies. This was further verified by the successful application of this method to bind antibodies to cytosolic components in living cells.


PLOS ONE | 2012

Suppression of p75 neurotrophin receptor surface expression with intrabodies influences Bcl-xL mRNA expression and neurite outgrowth in PC12 cells.

Congcong Zhang; Saskia Helmsing; Marta Zagrebelsky; Thomas Schirrmann; Andrea L. J. Marschall; Manuela Schüngel; Martin Korte; Michael Hust; Stefan Dübel

Background Although p75 neurotrophin receptor (p75NTR) is the first neurotrophin receptor isolated, its diverse physiological functions and signaling have remained elusive for many years. Loss-of-function phenotypic analyses for p75NTR were mainly focused at the genetic level; however these approaches were impacted by off-target effect, insufficient stability, unspecific stress response or alternative active splicing products. In this study, p75NTR surface expression was suppressed for the first time at the protein level by endoplasmic reticulum (ER) retained intrabodies. Results Three monoclonal recombinant antibody fragments (scFv) with affinities in the low nanomolar range to murine p75NTR were isolated by antibody phage display. To suppress p75NTR cell surface expression, the encoding genes of these scFvs extended by the ER retention peptide KDEL were transiently transfected into the neuron-like rat pheochromocytoma cell line PC12 and the mouse neuroblastoma x mouse spinal cord hybrid cell line NSC19. The ER retained intrabody construct, SH325-G7-KDEL, mediated a downregulation of p75NTR cell surface expression as shown by flow cytometry. This effect was maintained over a period of at least eight days without activating an unfolded protein response (UPR). Moreover, the ER retention of p75NTR resulted in downregulation of mRNA levels of the anti-apoptotic protein Bcl-xL as well as in strong inhibition of NGF-induced neurite outgrowth in PC12 cells. Conclusion The ER retained intrabody SH325-G7-KDEL not only induces phenotypic knockdown of this p75NTR but also p75NTR-associated cellular responses in PC12 cells.


mAbs | 2014

Functional knock down of VCAM1 in mice mediated by endoplasmatic reticulum retained intrabodies

Andrea L. J. Marschall; Frank N. Single; Katrin Schlarmann; Andreas Bosio; Nina Strebe; Joop van den Heuvel; André Frenzel; Stefan Dübel

Functional knockdowns mediated by endoplasmatic reticulum-retained antibodies (ER intrabodies) are a promising tool for research because they allow functional interference on the protein level. We demonstrate for the first time that ER intrabodies can induce a knock-down phenotype in mice. Surface VCAM1 was suppressed in bone marrow of heterozygous and homozygous ER intrabody mice (iER-VCAM1 mice). iER-VCAM1 mice did not have a lethal phenotype, in contrast to the constitutive knockout of VCAM1, but adult mice exhibited physiological effects in the form of aberrant distribution of immature B-cells in blood and bone marrow. The capability to regulate knock-down strength may spark a new approach for the functional study of membrane and plasma proteins, which may especially be valuable for generating mouse models that more closely resemble disease states than classic knockouts do.


Computational and structural biotechnology journal | 2016

Antibodies inside of a cell can change its outside: Can intrabodies provide a new therapeutic paradigm?

Andrea L. J. Marschall; Stefan Dübel

Challenges posed by complex diseases such as cancer, chronic viral infections, neurodegenerative disorders and many others have forced researchers to think beyond classic small molecule drugs, exploring new therapeutic strategies such as therapy with RNAi, CRISPR/Cas9 or antibody therapies as single or as combination therapies with existing drugs. While classic antibody therapies based on parenteral application can only reach extracellular targets, intracellular application of antibodies could provide specific advantages but is so far little recognized in translational research. Intrabodies allow high specificity and targeting of splice variants or post translational modifications. At the same time off target effects can be minimized by thorough biochemical characterization. Knockdown of cellular proteins by intrabodies has been reported for a significant number of disease-relevant targets, including ErbB-2, EGFR, VEGFR-2, Metalloproteinase MMP2 and MMP9, β-amyloid protein, α-synuclein, HIV gp120, HCV core and many others. This review outlines the recent advances in ER intrabody technology and their potential use in therapy.


Advances in Experimental Medicine and Biology | 2016

Recent Advances with ER Targeted Intrabodies.

Andrea L. J. Marschall; Stefan Dübel; Thomas Böldicke

ER intrabodies are recombinant antibody fragments produced and retained in the endoplasmatic reticulum (ER) of a cell or an organism with the purpose to induce phenotypes generated by interfering with the intracellular processing or by changing the location of the recognized antigen. The most common application is the generation of functional knockdowns of membrane proteins, which cannot reach their natural location on the cell surface when they are retained in the ER by the intrabody. Phenotypes generated by interfering with the secretion of extracellular or plasma proteins can be analyzed in a similar way. So far, most ER intrabody studies relied on scFv fragments subcloned from hybridoma lines. Recently, several large international research consortia have started to provide antibodies, with the final goal to cover substantial parts of the human proteome. For practical reasons of throughput and effort, in these consortia the most appropriate method to generate the necessary large numbers of monoclonal antibodies is in vitro selection, typically employing phage or yeast display. These methods provide the antibody genes right from the start, thereby facilitating the application of ER antibody approaches. On the other end, the first transgenic mice expressing an ER intrabody has recently been described. This moves the ER intrabody approach finally to level with classic in vivo knockout strategies - but also offers novel capabilities to the researchers. Promising new perspectives may originate from the fact that the knockdown is restricted to the protein level, that a graded knockdown strength can be achieved, or that the targeting of individual posttranslational modifications will be possible with previously impossible specificity. Finally, the link of todays high throughput recombinant antibody generation to a knock down phenotype is now possible with a single cloning step. It can therefore be expected that we will see a much quicker growth of the number of successful applications of ER intrabody technology in the near future than it has been seen in its first two decades.


Methods of Molecular Biology | 2017

Evaluating the Delivery of Proteins to the Cytosol of Mammalian Cells

Andrea L. J. Marschall; Congcong Zhang; Stefan Dübel

Delivery of proteins to the cytosol of living cells is a promising research tool. Delivery of antibodies in particular bears exciting applications such as in vivo tracking of proteins at endogenous expression levels or interference with cellular processes. In spite of the large number of methods published for protein delivery, successful applications so far are rare. A possible explanation for this is a vast overestimation of the delivery efficiency due to the use of inappropriate detection methods and/or unsuitable positive controls for cytosolic delivery. Therefore, we provide strategies for unequivocally detecting cytoplasmic protein delivery and quantifying protein transformation efficiency. Finally, we present a protocol for efficient protein delivery to the cytosol validated using these methods.


Biological Chemistry | 2018

Radiometal-labeled anti-VCAM-1 nanobodies as molecular tracers for atherosclerosis – impact of radiochemistry on pharmacokinetics

Gezim Bala; Maxine Crauwels; Anneleen Blykers; Isabel Remory; Andrea L. J. Marschall; Stefan Dübel; Laurent S. Dumas; Alexis Broisat; Charlotte Martin; Steven Ballet; Bernard Cosyns; Vicky Caveliers; Nick Devoogdt; Catarina Xavier; Sophie Hernot

Abstract Radiolabeling of nanobodies with radiometals by chelation has the advantage of being simple, fast and easy to implement in clinical routine. In this study, we validated 68Ga/111In-labeled anti-VCAM-1 nanobodies as potential radiometal-based tracers for molecular imaging of atherosclerosis. Both showed specific targeting of atherosclerotic lesions in ApoE−/− mice. Nevertheless, uptake in lesions and constitutively VCAM-1 expressing organs was lower than previously reported for the 99mTc-labeled analog. We further investigated the impact of different radiolabeling strategies on the in vivo biodistribution of nanobody-based tracers. Comparison of the pharmacokinetics between 68Ga-, 18F-, 111In- and 99mTc-labeled anti-VCAM-1 nanobodies showed highest specific uptake for 99mTc-nanobody at all time-points, followed by the 68Ga-, 111In- and 18F-labeled tracer. No correlation was found with the estimated number of radioisotopes per nanobody, and mimicking specific activity of other radiolabeling methods did not result in an analogous biodistribution. We also demonstrated specificity of the tracer using mice with a VCAM-1 knocked-down phenotype, while showing for the first time the in vivo visualization of a protein knock-down using intrabodies. Conclusively, the chosen radiochemistry does have an important impact on the biodistribution of nanobodies, in particular on the specific targeting, but differences are not purely due to the tracer’s specific activity.

Collaboration


Dive into the Andrea L. J. Marschall's collaboration.

Top Co-Authors

Avatar

Stefan Dübel

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

André Frenzel

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

Congcong Zhang

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

Thomas Schirrmann

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

Manuela Schüngel

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

Michael Hust

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge